
Atomic Variables and Operations

Godmar Back

Virginia Tech

March 18, 2024

Godmar Back Atomics 1/13 1 / 13

Preface

You can ignore this entire lecture if you write only programs that use proper
locking for all accesses (read or write) to shared variables and that use only
semaphores and condition variables for inter-thread signaling

When proper locking is used, multiple threads can access a shared address space
and they see the same values of these shared variables, corresponding to the
basic intuition of a shared-memory multi-threading programming model

this is unlike fork()

This lecture touches on what lies beyond

Godmar Back Atomics 2/13 2 / 13

Story So Far

Only data-race free programs provide sequential consistency (a sequential order
of all memory operations in terms of “steps” is observed by all threads and it is
consistent with the order in the program).

The traditional way to ensure this is by using locks, semaphores, and condition
variables

Locks: The second thread to acquire a lock and enter a critical section will see all updates
made by the first thread to have acquired the lock
Semaphores/Condition Variables: A thread returning from a call to wait will see all updates
performed prior to the signal operation that caused the thread to return from wait

Ensuring data-race freedom validates programmer intuition
Opposite: 2 threads see updates in different order: thread 1 updates A then B, thread 2
sees new value of B and old value of A
Data-race freedom stipulates only that a sequentially consistent ordering exists, it doesn’t
say which one it is

See Adve & Boehm [2] for precise definition and discussion

Godmar Back Atomics 3/13 3 / 13

What if Locks Are Too Slow?

Or: are there other ways to constrain compiler & processor?

C11/C++11 atomic variables are “synchronization variables” [1]

Their use disallows certain observed interleavings for the memory operations
preceding and following accesses to these variables

They do not place threads into the BLOCKED state

Concurrent accesses to synchronization variables are not considered races

These variables also can be atomically updated in read-modify-write operations

By default (memory order seq cst), they ensure the existence of a sequentially
consistent ordering for accesses to them and accesses to non-atomic variables in
between atomic accesses

Godmar Back Atomics 4/13 4 / 13

Recap: failure of busy-waiting “done” flag check

waitingonaflag.c
#include <stdio.h>

#include <stdlib.h>

#include <stdbool.h>

bool done;

int x;

void thread1() {

x = rand() % 2;

done = true;

}

int thread2() {

while (!done) { }

return x;

}

compiler reorders statements

compiler replaces loops with ifs

compiled with gcc 7.5
thread1:

subq $8, %rsp

call rand@PLT

movl %eax, %edx

movb $1, done(%rip) # done = true

shrl $31, %edx

addl %edx, %eax

andl $1, %eax

subl %edx, %eax

movl %eax, x(%rip) # x = ...

addq $8, %rsp

ret

thread2:

cmpb $0, done(%rip)

jne .L8 # if !done goto L8

.L7: # else: loop forever

jmp .L7

.L8:

movl x(%rip), %eax

ret

Godmar Back Atomics 5/13 5 / 13

C11 Atomics

waitingonaflag-atomic.c
#include <stdio.h>

#include <stdlib.h>

#include <stdbool.h>

#include <stdatomic.h>

atomic_bool done;

int x;

void thread1() {

x = rand() % 2;

done = true;

}

int thread2() {

while (!done) { }

return x;

}

See C11 atomic types

compiled with gcc 7.5
thread1:

subq $8, %rsp

call rand@PLT

movl %eax, %edx

shrl $31, %edx

addl %edx, %eax

andl $1, %eax

subl %edx, %eax

movl %eax, x(%rip)

movb $1, done(%rip)

mfence

addq $8, %rsp

ret

thread2:

.L5:

movzbl done(%rip), %eax

testb %al, %al

je .L5

movl x(%rip), %eax

ret

Godmar Back Atomics 6/13 6 / 13

https://en.cppreference.com/w/c/language/atomic

C11 Atomics (ARM64)

without atomics
thread1:

stp x29, x30, [sp, -16]!

mov x29, sp

bl rand

cmp w0, 0

adrp x2, :got:x

adrp x1, :got:done

and w0, w0, 1

mov w3, 1

ldr x2, [x2, #:got_lo12:x]

csneg w0, w0, w0, ge

ldr x1, [x1, #:got_lo12:done]

str w0, [x2]

strb w3, [x1]

ldp x29, x30, [sp], 16

ret

thread2:

adrp x0, :got:done

ldr x0, [x0, #:got_lo12:done]

ldrb w0, [x0]

cbnz w0, .L8

.L7:

b .L7

.L8:

adrp x0, :got:x

ldr x0, [x0, #:got_lo12:x]

ldr w0, [x0]

ret

with atomics
thread1:

stp x29, x30, [sp, -16]!

mov x29, sp

bl rand

cmp w0, 0

adrp x2, :got:x

adrp x1, :got:done

and w0, w0, 1

ldr x2, [x2, #:got_lo12:x]

csneg w0, w0, w0, ge

ldr x1, [x1, #:got_lo12:done]

str w0, [x2]

mov w0, 1

stlrb w0, [x1]

ldp x29, x30, [sp], 16

ret

thread2:

adrp x1, :got:done

ldr x1, [x1, #:got_lo12:done]

.L5:

ldarb w0, [x1]

tst w0, 255

beq .L5

adrp x0, :got:x

ldr x0, [x0, #:got_lo12:x]

ldr w0, [x0]

ret

Godmar Back Atomics 7/13 7 / 13

Simple Use Cases

Certain accesses that were
previously unsafe can be done now

Checking Write-Once Variables
atomic_bool gameover;

//

if (gameover) {

// game is over and it is safe to access the results

}

Double Checked Locking Idiom
pthread_mutex_lock lock;

_Atomic struct sometype * s;

// Goal

struct sometype *

makeSingleton() {

if (s == NULL) { // access without lock

pthread_mutex_lock(&lock);

if (s == NULL) { // double-check

tmp = malloc(...);

initialize(tmp);

s = tmp; // s being atomic, all writes

// inside initialize are seen

// when another thread sees

// s != NULL

}

pthread_mutex_unlock(&lock);

}

return s;

}

Godmar Back Atomics 8/13 8 / 13

Read-modify-write Operations

atomicupdates.c
#include <stdatomic.h>

atomic_int i;

atomic_ulong d;

void atomic_updates()

{

i = i + 5; // non-atomic

i += 5;

d /= 2;

}

Certain operations are turned by the
compiler into atomic updates

e.g., a++, a *= 2

but not a = a + 1

atomicupdates.s
atomic_updates:

movl i(%rip), %eax

addl $5, %eax

movl %eax, i(%rip)

mfence

lock addl $5, i(%rip)

movq d(%rip), %rax

.L2:

movq %rax, %rdx

shrq %rdx

lock cmpxchgq %rdx, d(%rip)

jne .L2

rep ret

Either using atomic instructions
provided by the architecture, or
using a loop based on atomic
compare-and-exchange
or equivalent

Godmar Back Atomics 9/13 9 / 13

Combining Atomics with Lock-based Synchronization

Tricky, consider

Atomics + Condition Variables
atomic_bool gameover;

// ...

// BUG: Checking the condition `gameover`

// is not atomic with respect to calling pthread_cond_wait

while (!gameover) {

pthread_mutex_lock(&lock);

pthread_cond_wait(&cond, &lock);

pthread_mutex_unlock(&lock);

}

Binary instrumentation-based race
detection tools (Helgrind, DRD) are
generally unaware of atomics

Should you prefer this:

atomic_int inqueuecount; // count of items in queue

pthread_mutex_lock queuelock; // queue lock

void enqueue(struct item *item)

{

inqueuecount++;

pthread_mutex_lock(&queuelock);

add_to_queue(item);

pthread_mutex_unlock(&queuelock);

}

to this?

int inqueuecount;

pthread_mutex_lock queuelock;

void enqueue(struct item *item)

{

pthread_mutex_lock(&queuelock);

inqueuecount++;

add_to_queue(item);

pthread_mutex_unlock(&queuelock);

}

Godmar Back Atomics 10/13 10 / 13

Lock-free Synchronization

Although locks work sufficiently well for many scenarios, and provide a general
facility for implementing any kind of atomic modifications, they have a number
of drawbacks; to list some:

Potential for reduced CPU utilization when synchronization is too coarse-grained
Increased potential for deadlock when too fine-grained
Potential for performance decrease when highly contended
Potential for priority inversion (low-priority threads hold up high-priority threads by holding
locks those threads want)
Convoying: threads holding locks for long periods of time create “convoys” behind them
No good support for asynchronous termination (kill) of threads holding locks
Don’t play well with Unix signals

These shortcomings gave rise to certain “lock-free” synchronization algorithms
that are implemented using atomic operations

data structures: lock-free stacks, lists, etc.
e.g. java.util.concurrent.ConcurrentHashMap

But their study is a topic for a separate lecture or class

Godmar Back Atomics 11/13 11 / 13

Addendum: the volatile keyword

In C/C++, volatile says that any access (read or write) should be considered
to have a side-effect, thus the compiler cannot optimize it out or reorder it.

Great for memory mapped I/O, for instance

Unlike atomics, it has no effect on what other threads see (does not introduce
fences or acquire/release load/stores), and thus cannot be used for interthread
communication

Historic note: prior to the arrival of C11 support, programmers used volatile in hackish
and unreliable attempts at getting the compiler to produce the desired code

In Java, volatile is similar to atomic variables in C11/C++11 in the default
setting memory order seq cst, except without the ability to do atomic
read-modify-writes (see java.util.concurrent.atomic for the latter).

Godmar Back Atomics 12/13 12 / 13

References

[1] C11 atomic operations library.
https://en.cppreference.com/w/c/atomic.

[2] Hans-J. Boehm and Sarita V. Adve.
You don’t know jack about shared variables or memory models.
Commun. ACM, 55(2):48–54, February 2012.

Godmar Back Atomics 13/13 13 / 13

https://en.cppreference.com/w/c/atomic

