
CS 3214: Project 1

The Customizable Shell
Help Session:
Thursday Feb 9, 2023 7:00 PM

Timothy Wu <wutp20@vt.edu>
Tanvi Allada <tanviallada@vt.edu>

Topics
● Shell Concepts
● Project Overview / Logistics
● Version Control (Git)
● Debugging (GDB)
● Advice
● Q & A

Shell Concepts

What is a shell?
● Command Interpreter

○ Reads user input and executes user requests
○ Not to be confused with a “Terminal” (next slide explains distinction)

Terminal vs Shell

Terminal (the front-end GUI of our shell) Shell (an executable with no GUI)
ccerne@ccerne-ubuntu:~/Documents$ ls -l
ls -l
total 16
drwxrwxr-x 7 ccerne ccerne 4096 Aug 23 10:37 CTF
drwxrwxr-x 6 ccerne ccerne 4096 Sep 11 21:42 Programming
drwxrwxr-x 5 ccerne ccerne 4096 Sep 1 16:56 Programs
drwxrwxr-x 5 ccerne ccerne 4096 Sep 13 21:19 VirginiaTech
ccerne@ccerne-ubuntu:~/Documents$ echo $SHELL
/usr/bin/zsh

This terminal is running zsh, a shell

Examples: gnome-terminal,
terminator, Terminal.app
(macOS) etc.

The 80s called, they want their Terminal
back!

Behind the Scenes

$ echo 'Welcome to Systems!'

Welcome to Systems!

f
o
r
k

FOUR STEPS for non-built-in

1. Shell waits for user input
2. Shell interprets command
3. Forks a process
4. If it’s a foreground parent waits for
child to finish. Else, parent repeats
the process again.

- Child executes the command

Additional Features for the Shell (where you come in)

● Foreground / Background Processes
● Process Groups
● Built-in Commands
● I/O Piping
● I/O Redirection
● Signal Handling

Foreground / Background Processes

● The shell can fork processes into the foreground or background

Foreground Background

- Only one foreground process group
at a time

- Have access to the terminal

- Does not have terminal access
- Using ‘&’ sends command to

background to run

Process Groups

● A Job is essentially a pipelined-command
● Each Job has its own process group

o Each command within a Job should have the same PGID
o Two methodologies of creating new processes:

o fork() and execvp()
o posix_spawn

● Jobs are deleted when they are completed
o Be careful not to delete a job prematurely
o See the comment above wait_for_job()

Notice the PID and PGID!

POSIX Spawn
● Replaces fork() + exec() entirely

● Code is “linear” rather than handling multiple processes in if-else statements

● posix_spawnattr_t and posix_spawn_file_actions_t are used to store information
process groups and I/O redirection/piping respectively. These structs don’t do
anything until posix_spawnp is used.

● Example: posix_spawn(3) - Linux manual page (man7.org)

Note: You need to include “spawn.h” in your cush.c to use these functions.
The file is located in the posix_spawn directory. Also be sure to use the
Makefile and compile posix_spawn.

https://man7.org/linux/man-pages/man3/posix_spawn.3.html

fork() + exec() posix_spawn()

We recommend using posix_spawn() for this project, but it is not required.

POSIX Spawn Attributes
● Process Groups - posix_spawnattr_setpgroup()

● Terminal Control - posix_spawnattr_tcsetpgrp_np()

● Piping - posix_spawn_file_actions_adddup2()

● I/O Redirection - posix_spawn_file_actions_addopen()

More listed on both the spec and <spawn.h>.

Built-in Commands

● Commands that are defined within the program by you
○ No need to fork off and execute an external program

● Required Built-In Commands for your shell:
○ kill - kills a process
○ jobs - displays a list of jobs
○ stop - stops a process
○ fg - sends a process to foreground
○ bg - sends a process to background
○ exit - exits the shell

● Built-in Commands are not considered Jobs
● Two additional built-ins / functionality extenders also required

○ One low-effort
○ One high-effort

Built-ins Behind the Scenes

$ jobs

[1]+ Stopped vim
[2]- Running sleep 20 &

FOUR STEPS for built-in

1. Shell waits for user input
2. Shell realizes this is a built in command
3. Shell executes built-in (no forking)
4. After execution, shell repeats

I/O Piping

● The Shell will fork off a
child process to execute
each command in a
pipeline

● But since this is a pipeline
of commands, we’ll also
need to wire STDIN and
STDOUT for each
process….

ls -l | grep *.txt | wc

ls -l

grep *.txt

wc

I/O Piping

ls -l | grep *.txt | wc

ls -l grep *.txt wc

● Processes will wait on previous process, final process outputs to terminal
● STDIN and STDOUT for processes are joined to create the pipeline

Input:
Output:

 1 9 58

I/O Redirection

● > overwrites original file contents before writing out
● >> appends to the end of contents in file
● < read input from existing file rather than STDIN

I/O Redirection (Output)

echo 'Welcome to Systems!' > output.txt

Welcome to Systems!

f
o
r
k

output.txt

I/O Redirection (Input)

wc < hello.txt

1 2 12

f
o
r
k

hello.txt

I/O Redirection (Stderr)

● Contents written to STDERR can also be piped into other processes using |&
and outputted to files using >&.

Notice how the message “Write to stderr.” was not outputted.

Signal Handling

● Shells can handle signals sent to them
○ SIGINT (Ctrl + C)
○ SIGTSTP (Ctrl + Z)
○ SIGCHLD (when a child process terminates)

● Most of the functionality of this will be done in
handle_child_status(pid_t pid, int status)

Handling SIGINT (Ctrl + C)

1. Shell and single child
process (in the foreground)
are running

2. User sends SIGINT (Ctrl +C) 3. Signal sent to foreground
process group

4. Group is forced to terminate,
shell reacquires terminal control

Explanation : https://en.wikipedia.org/wiki/Process_group#Applications

https://en.wikipedia.org/wiki/Process_group#Applications

Handling SIGTSTP (Ctrl + Z)

1. Shell and single child
process (in the foreground)
are running

2. User sends SIGTSTP (Ctrl + Z) 3. Signal sent to foreground
process group

4. Group is forced to stop, shell
reacquires terminal control

Explanation : https://en.wikipedia.org/wiki/Process_group#Applications

Z

https://en.wikipedia.org/wiki/Process_group#Applications

Handling SIGCHLD

1. Shell and single child
process (foreground or
background) are running

2. Child process is finished and
terminates - notifies parent by
sending SIGCHLD

3. The shell’s SIGCHLD
handler code uses info to
perform any necessary
bookkeeping

4. Shell continues running

Explanation : https://en.wikipedia.org/wiki/Process_group#Applications

Process

3657 just

exited

https://en.wikipedia.org/wiki/Process_group#Applications

Handling SIGCHLD: WIF* Macros
● When wait* is called it will return a pid and a status for a child process that

changes state. Using macros, we can decode this status to discover what

state a process changed to and how it happened:
○ WIFEXITED(status) - did child process exit normally?

○ WIFSIGNALED(status) - was child process signaled to terminate?

○ WIFSTOPPED(status) - was child process signaled to stop?

Project Overview

Requirements and Grading
1. Basic Functionality - 50 pts

a. Start foreground and background jobs
b. Built-in commands : ‘jobs’, ‘fg’, ‘bg’, ‘kill’, ‘stop’
c. Signal Handling (SIGINT, SIGTSTP, SIGCHLD)

2. Advanced Functionality - 50 pts
a. I/O Pipes
b. I/O Redirection
c. Running programs requiring exclusive terminal access (ex: vim)

3. Two Extra Built-ins - 20 pts
a. One low effort
b. One high effort

4. Version Control (git) - 10 pts
a. At least 3 commits per partner

5. Documentation - 10 pts

Total : 140 points

Before You Start Coding ….
● Take time to read over, understand, and comment the starter code
● Read the provided lecture material and Chapter 8 in the textbook
● Watch the P1 help session recording
● Understand Exercise 1

○ fork() / exec() model
○ Piping : pipe(), dup2(), close()

● Check out Dr. Back’s example shell
○ Located at ~cs3214/bin/cush-gback in rlogin
○ Can be useful for comparing outputs with your shell

Base Code
● Already includes a parser!
● Parser spits out hierarchical data structures

Data Structures

echo 74 > tim_midterm.txt; cat tim_midterm.txt | rev > tanvi_mitderm.txt

ast_command_line

echo 74 > tim_midterm.txt

ast_pipeline
cat tim_midterm.txt | rev > tanvi_mitderm.txt

ast_pipeline

echo 74

ast_command

cat tim_midterm.txt

ast_command

rev

ast_command

ast_command_line

ast_pipeline

ast_command

ast_pipeline
ast_command ast_command

List Data Structure
● You’re also provided with a linked list data structure

○ Check out list.h and list.c
● You’ll be using this list throughout the semester
● Read through list.h before using it

“Data contains node” vs “Node points to data”

class listnode<T> {
T data;
listnode<T> next;

}

struct list_elem {
struct list_elem * prev;
struct list_elem * next;

}

Your Linked List A Regular Linked List

Sentinel Node Node Sentinel

Data DataSentinel Sentinellist_elem list_elem

…. ….

Retrieve data from a struct list_elem by using the list_entry macro:

struct ast_command * cmd = list_entry(e, struct ast_command, elem);

Struct 1 Struct 2

An example of an element in a list
struct ast_pipeline {
 struct list/* <ast_command> */ commands; /* List of commands */
 char *iored_input; /* If non-NULL, first command should read from
 file 'iored_input' */
 char *iored_output; /* If non-NULL, last command should write to
 file 'iored_output' */
 bool append_to_output; /* True if user typed >> to append */
 bool bg_job; /* True if user entered & */
 struct list_elem elem; /* Link element. */
};

Adding list_elem to a structure allows this
structure to be added to a list

List Pitfalls
● Don’t:

○ Use the same list_elem for multiple lists
○ Edit an element while iterating

■ Naive loop to remove elements in a list will fail!

○ Forget to list_init()

// invalid example
for (list_elem in list)
{

// do stuff

if (someCondition)
{

list_remove(currElem);
}

}

BAD IDEA :(

// valid example: deallocates a pipeline struct and any commands stored in it while iterating

void ast_pipeline_free(struct ast_pipeline *pipe)

{

 for (struct list_elem * e = list_begin(&pipe->commands); e != list_end(&pipe->commands);) {

 struct ast_command *cmd = list_entry(e, struct ast_command, elem);

 e = list_remove(e); //Acts as the iterator; stores next element into e

 ast_command_free(cmd);

 }

 free(pipe);

} // make sure to remove an ast_pipeline from a list before adding it to another!

// bottom line with lists? ALWAYS TEST

Utility Functions (Strongly Recommended)
● Signal Support (signal_support.c / .h)

○ signal_block()
○ signal_unblock()
○ singal_set_handler()

● Terminal State Management (termstate_management.c / .h)
○ termstate_init()
○ termstate_give_terminal_to()
○ termstate_give_terminal_back_to_shell()
○ termstate_get_current_terminal_owner()
○ termstate_save()
○ termstate_restore()

Additional Built-ins and extensions
● Your shell must contain two extra built-ins / functionality extensions

o One high effort and one low effort (bolded is low-effort)

● Ideas include:

● Unix Philosophy - implement only functionality that is not already supported
using Unix commands. If you have an idea not shown on the list or have any
doubts please ask us

- Customizable Prompt
- Setting/unsetting env vars
- Implementing the ‘cd’ built-in
- Glob expansion (e.g., *.c)
- Timing commands (ex. time)
- Alias support

- Shell Variables
- Directory Stack
- Command-line history
- Backquote substitution
- Smart command-line completion
- Embedded Apps

Testing / Submission
● Please submit code that compiles!
● Test the driver before submitting, don’t just run tests individually
● Use GDB to fix any errors (compile with -g flag!)
● When grading, tests will be ran 3-5 times. If you crash a single time, it’s

considered failing

Test Driver

Options:

● -b : basic tests (processes, built-ins, signals)
● -a : advanced tests (I/O Piping, I/O Redirection, exclusive terminal access)
● -h : list all the options

cd src/
../tests/stdriver.py [options]

*- stdriver.py also available at ~cs3214/bin/stdriver.py

● The driver reads from .tst file that describes a test suite (ex. basic.tst)
○ Ex: basic.tst contains a series of test scripts that it will run from the folder /tests/basic

Additional Tests
● You are required to write tests for your two extra built-ins

○ Create a .tst file in ‘tests’ and create a directory that will store your test scripts
● Inside <custom>.tst file:

= <custom> Tests
pts <custom>/<test_name>.py
pts <custom>/<test_name>.py
…

- The driver checks number of total points
(pts) to use for a test. Since this is just your
own custom tests you can put an arbitrary
number here

= Milestone Tests
1 basic/foreground.py
1 basic/cmdfail_and_exit_test.py

Additional Tests (Part 2)
● Make sure your custom.tst file is of type “ASCII text”

● If it includes Windows terminators (CR, CRLF, etc.), see man tr
● We want \n, not \r\n

$ file custom.tst custom.tst: ASCII text

Design Document
● When you submit you must include

a README.txt describing your
implementation of P1

● Explain the custom built-ins created
and approach taken to develop
them.

● TAs will assign credit only for the
functionality for which test cases
and documentation exist

Version Control

Version Control
● You will be using Git for managing your source code
● Why?

○ Organizes your code
○ Keeps track of features
○ Allows collaborators to work freely without messing up other existing code
○ Back-ups whenever something goes wrong

Basic Git Commands
● Stage file for commit:

● Commit files:

● Push changes to remote (note: always pull before push!)

$ git add <file_name>

$ git commit -m ‘Add a description here’

$ git push [origin <branch_name>]

Basic Git Commands
● Fetch changes from remote:

● Check status:

● Revert to the previous commit:

$ git pull

$ git status

$ git reset [--hard]

Basic Git Commands
● Create a new branch from the current branch:

● Switch to another branch:

● Merge a branch into the current branch

$ git checkout –b <new_branch_name>

$ git checkout <branch_name>

$ git merge <branch_name>

Setup Git Access
● You’ll need an SSH Key to get access to projects at git.cs.vt.edu
● If you don’t already have a key…

○ Create a new key:

○ Add Key to https://git.cs.vt.edu/profile/keys

■ You will paste public key here ----------->

$ ssh-keygen -t rsa -b 4096 -C "email@vt.edu" \

-f ~/.ssh/id_rsa

https://git.cs.vt.edu/profile/keys

● Verify you have access
● The first time you connect you will be asked to verify the host, just answer

‘Yes’ to continue

● You can get in-depth explanations here:
○ Generate a key
○ Use an existing key

Verify Git Access

PTY allocation request failed on channel 0
Welcome to GitLab, @spencetk! ← Your pid should be displayed here
Connection to git.cs.vt.edu closed.

11 spencetk@linden ~ >ssh git@git.cs.vt.edu

https://git.cs.vt.edu/help/ssh/README#generating-a-new-ssh-key-pair
https://git.cs.vt.edu/help/ssh/README#locating-an-existing-ssh-key-pair

1. One member will fork the base repository:
○ https://git.cs.vt.edu/cs3214-staff/cs3214-cush

2. Invite partner to collaborate
○ Go to Settings > Members to add them

○ Check partner role permissions too

3. Both members will clone the forked repository
on their machines:

IMPORTANT: Set forked repository to private
Go to Settings > General > Visibility, project features, permissions

GitLab Project Setup

$ git clone <your git repo url>.git *Your forked repository will have a
navigation menu on the left side.
Click under Settings to add members
and set repo to private

cs3214-cush

https://git.cs.vt.edu/cs3214-staff/cs3214-cush

The GNU Project
Debugger

Starting GDB
● Invoke GDB with a program and arguments:

● Better alternative:

● Must be compiled with debug symbols, -g

$ gdb --args program arg1 arg2

(gdb) run arg1 arg2

Breakpoints
● Set a breakpoint

● Set a conditional breakpoint:

● Ignore breakpoint #1 100 times

● Show # of times breakpoint was hit

(gdb) b <func_name> OR
(gdb) b <line_number>

(gdb) b <func_name> if <condition>

(gdb) ignore 1 100

(gdb) info b

Backtrace and Frames
● Show backtrace:

● Show frame:
○ After selecting frame, you can print all variables declared in that function call

(gdb) backtrace

(gdb) frame <num>

Follow-Fork-Mode
● Which process to follow after a fork (parent / child):

○ ‘parent’ = ignore child process and continue debugging the parent

○ ‘child’ = begin debugging the child process when fork() is called

● Retaining debugger control after fork:
○ After a fork, specify whether to freeze the child or allow it to run (this may make it difficult to

find race conditions)

(gdb) set follow-fork-mode <mode>

(gdb) set detach-on-fork <mode>

Light reading: https://visualgdb.com/gdbreference/commands/set_follow-fork-mode

https://visualgdb.com/gdbreference/commands/set_follow-fork-mode

Layout Source
● Show source code lines while debugging
● Far superior alternative to ‘list’
● Toggle with Ctrl-X+A

(gdb) layout src

Advice

How Can I Not Fail Systems?
● Utilize your class resources
● Manage your time wisely
● Understand your tools
● Get along with your partner
● Break down the problem
● Understand the concepts

Advice
● START EARLY
● Create a roadmap before starting projects
● Utilize TAs

○ Come with questions prepared, try to figure out what the problem is first
○ Be organized and have clean code - the cleaner it is, the faster we can help!
○ Run valgrind and try debugging with GDB before consulting us
○ Discord, Zoom, Class Forum

● Understand the Exercises
● Use valgrind! This can isolate many bugs
● Become an expert at the debugger
● Find what works best for communicating with your partner

○ In-Person Meetings, Discord, Zoom, etc.

Sources
● Referred to previous help session slides created by previous UTA’s Kent

McDonough, Connor Shugg, Joe D’Anna, Chris Cerne, Justin Vita, Sam
Lightfoot, and Alex Kyer since the Spring 2021 Semester

● Spencer Keefer created the revised slides

Thanks for attending!
Questions?

