
CS 3214 Spring 2023 Midterm Solutions

April 6, 2023

1 Operating System Concepts (19 pts)

1.1 Basic OS Ideas (5 pts)

Check if the following statements are true or false.

a) Operating Systems provide abstractions that can be accessed through interfaces.

□✓ true / □ false

b) Examples of abstractions provided by an OS include CPU control registers (e.g., %cr3), memory-
mapped I/O devices, and devices such as timer chips/circuitry.

□ true / □✓ false

These are examples of details abstractions are designed to hide.

c) The OS kernel is the boot program that allows a computer to start up, at which point it will finish
and pass control to application programs.

□ true / □✓ false

The kernel is not just a boot program, but it provides services to applications and manages
resources while the machine is running.

d) Dual-mode operation provides a line of defense against bugs in untrusted user code.

□✓ true / □ false

e) When a process terminates, the OS will close all of its low-level file descriptors automatically.

□✓ true / □ false

1.2 BLOCKED processes (7 pts)

In class, we discussed how to model the execution of processes using a simplified process state model.
Check what events would cause a process to enter the BLOCKED state:

a) the process issues the sleep() system call with an argument of 10 seconds

□✓ yes / □ no

b) the process enters an infinite loop

□ yes / □✓ no

c) the scheduler switches out the process to run a different process (time sharing)

□ yes / □✓ no

1

CS 3214 Midterm Spring 2023

d) the process performs the getpid() system call

□ yes / □✓ no

e) the process attempts to lock a (process-shared) mutex that is held by another process

□✓ yes / □ no

f) the process performs a read on a file descriptor corresponding to a file whose data has not yet been
read from an I/O device

□✓ yes / □ no

g) the process uses C11 atomics to loop on a flag (e.g., ”while (!done) ... ”)

□ yes / □✓ no

1.3 To syscall or not to syscall (7 pts)

As we learned in class, a system call is the mechanism with which a process in userspace utilizes services
from the OS kernel. But not all services must be implemented in the kernel. For the cases below, identify
which would most likely require a system call:

a) routine that performs a string comparison

□ yes / □✓ no

b) routine that spawns a thread that can simultaneously execute on another CPU

□✓ yes / □ no

c) routine that computes a cryptographic signature over a piece of data

□ yes / □✓ no

d) routine that writes data to an I/O device

□✓ yes / □ no

e) routine that sets up a communication channel between two processes

□✓ yes / □ no

f) routine that spawns multiple lightweight cooperatively scheduled (non-preemptive) tasks

□ yes / □✓ no

g) routine that computes a thumbnail of a jpg image

□ yes / □✓ no

2 Unix Processes and IPC (27 pts)

2.1 Four forks (8 pts)

No OS exam would be complete without a puzzle surrounding the fork() system call. This one involves
four programs A through D, shown below.

2

CS 3214 Midterm Spring 2023

Program A Program B Program C Program D

#include <unistd.h>

int

main()

{

if (fork())

fork();

sleep(1000);

}

#include <unistd.h>

int

main()

{

if (!fork())

fork();

sleep(1000);

}

#include <unistd.h>

int

main()

{

if (fork())

if (fork())

fork();

sleep(1000);

}

#include <unistd.h>

int

main()

{

if (fork())

fork();

else

fork();

sleep(1000);

}

Tree 1 Tree 2 Tree 3 Tree 4

PID CMD

1025278 -bash

1031687 _ ./ft

1031688 _ ./ft

1031690 | _ ./ft

1031689 _ ./ft

PID CMD

1025278 -bash

1030367 _ ./ft

1030368 _ ./ft

1030369 _ ./ft

3809960 -bash

3979126 _ ./ft

3979127 _ ./ft

3979128 _ ./ft

3979129 _ ./ft

PID CMD

1025278 -bash

1031222 _ ./ft

1031223 _ ./ft

1031224 _ ./ft

Each of the four programs (A through D) produced one of the four process tree diagrams (1 through
4) when started in the background. Which program produced which tree?

Program A B C D

Tree 2 4 3 1

2.2 Pipes, I/O redirection, and posix spawn (8 pts)

A group working on their project 2 attempted to add support for pipes to their shell, but their program
did not work. The program below shows the logic they ended up implementing:

1 #define _GNU_SOURCE

2 #include <spawn.h>

3 #include <stdio.h>

4 #include <fcntl.h>

5 #include <unistd.h>

6

7 const int WRITE_END = 1; // this definition is correct per man page

8 const int READ_END = 0;

9 char **environ;

10

11 int

12 main(int argc, char *argv[])

13 {

14 pid_t child_pid;

15 posix_spawn_file_actions_t file_actions;

16 posix_spawn_file_actions_init(&file_actions);

17

18 int pipefds[2];

19 pipe2(pipefds, O_CLOEXEC);

3

CS 3214 Midterm Spring 2023

20

21 posix_spawn_file_actions_adddup2(&file_actions, pipefds[WRITE_END], STDOUT_FILENO);

22 posix_spawn_file_actions_adddup2(&file_actions, pipefds[READ_END], STDIN_FILENO);

23 posix_spawnp(&child_pid, argv[1], &file_actions, NULL, argv+1, environ);

24

25 dup2(pipefds[WRITE_END], STDOUT_FILENO); // dup2(old, new)

26 printf("started %s \n " , argv[1]);

27 }

a) (2 pts) When this program is compiled and run with

./prog cat

what would the visible output be and why?

There would be no output because the current program’s standard output file descriptor
was redirected to the pipe created on line 19, thus the printf() statement on line 26 will
write data into the pipe.

b) (4 pts) What effect would running ./prog cat have on the system on which it runs? Justify your
answer by describing what the code displayed will actually do.

Careful examination of the adddup2 calls reveals that the cat’s standard output will be
redirected to the write end of the pipe whereas the read end of the pipe is redirected to
its standard input. Hence, whatever cat writes to its standard output will be sent to its
standard input. Initially, cat will read the string "started ..." from there, output it to
its standard output (into the pipe), then read it from there, ad infinitum. Since the parent
process does not wait for the child process it creates, the result is a runaway cat process
that uses up one core on the machine it runs, making it difficult for students to benchmark
their p2. This is in fact what happened to a number of groups in p1.

c) (2 pts) How would the program’s effect change if line 26 were removed?

In this case, cat would be trying to read from the pipe that is connected to its standard
input, but there is nothing to read. Since the pipe’s write-end is still open, it’ll be blocked
there forever (or until the process is terminated). The result is a leftover (“orphaned”) cat
process that is however not consuming any CPU time.

2.3 System Calls and I/O (5 pts)

Consider the following excerpt of a system call trace:

openat(AT_FDCWD, "a.txt", O_WRONLY|O_CREAT|O_TRUNC, 0666) = 5

write(5, "Hello, World\n", 13) = 13

close(5) = 0

exit(0) = ?

Write a program in a language of your choice that would have produced this system call trace. (You
may not use the C functions of the same name as the entries in the strace, regardless of the language.)

Here’s a Java program:

4

CS 3214 Midterm Spring 2023

import java.io.*;

public class WriteFile {

public static void main(String []av) throws IOException {

var fw = new PrintWriter(new FileWriter("a.txt"));

fw.println("Hello, World");

fw.close();

}

}

The complete program (headers, class and function definitions) didn’t need to be shown as long
as the relevant API calls that would trigger those system calls were visible.

2.4 Know Your Shell (6 pts)

Translate the following three statements from English into a shell command and/or keystrokes. You may
use valid syntax of any widely used shell, including cush.

a) (2 pts) Run the ps command with the flag ax and sort the output using the sort utility, which
should be given the -n flag.

ps ax | sort -n

b) (2 pts) Start apache2 in the background, redirecting its standard output and error streams to
/var/log/httpd2.log

apache2 >& /var/log/httpd2.log &

or also

apache2 2>&1 >/var/log/httpd2.log &

c) (2 pts) Assume that you have just started a long-running command as a foreground job. You change
your mind and you wish to send this job into the background. (Assume your shell currently has no
other jobs running.) Describe what keystrokes and/or commands you would need to type.

First, type Ctrl-Z, then enter bg %1 or on bash just bg works as well.

3 Multithreading (31 pts)

3.1 Threads and Variables (10 pts)

Consider the following C11 program that uses C11’s Thread local and Atomic keywords:

1 #include <pthread.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <stdint.h>

5

6 static _Thread_local int tls;

7 static int * X;

8 static _Atomic int Y;

9

10 static void print(int index) {

11 printf("tls %d %d \n " , index, tls);

12 }

5

CS 3214 Midterm Spring 2023

13

14 static void*

15 thread_func(void *_arg)

16 {

17 uintptr_t myarg = (uintptr_t) _arg;

18 tls = *X + myarg;

19 print (myarg);

20 Y += tls;

21 return NULL;

22 }

23

24 int

25 main()

26 {

27 const int N_THREADS = 4;

28

29 pthread_t t[N_THREADS];

30 X = malloc(sizeof(int));

31 *X = 42;

32 for (uintptr_t i = 0; i < N_THREADS; i++) {

33 pthread_create(t+i, NULL, thread_func, (void *) i);

34 }

35

36 for (int i = 0; i < N_THREADS; i++)

37 pthread_join(t[i], NULL);

38 print (N_THREADS);

39 printf ("%d \n " , Y);

40 }

a) (6 pts) Provide one possible output of this program.

tls 0 42

tls 1 43

tls 2 44

tls 3 45

tls 4 0

174

The first four lines (tls 0 through tls 3) could appear in any order.

b) (2 pts) The C11 memory model defines a data race as follows:

When an evaluation of an expression writes to a memory location and another evaluation
reads or modifies the same memory location, the expressions are said to conflict. A program
that has two conflicting evaluations has a data race unless either

• both conflicting evaluations are atomic operations

• one of the conflicting evaluations happens-before another

Lines 18 and 31 contain accesses to a shared variable X, but there is no lock protecting these accesses.
Based on the definition above, do these accesses constitute a data race? Say why or why not.

They do not constitute a data race because there is a happens-before relationship between
the write on line 31 in the main thread and the read accesses on line 18 in each of the
four threads. The HB relationship follows from the fact that everything that occurs in a
(parent) thread happens before anything that’s run in any (child) threads later created by
that thread.

6

CS 3214 Midterm Spring 2023

c) (2 pts) Lines 20 and 39 contain accesses to a shared variable Y. Do the accesses to this variable
constitute a data race? Say why or why not.

They also do not constitute a data race because the variable is marked with Atomic so it
falls under the exception for atomic operations.

3.2 Condition Variables (8 pts)

Consider the following program which uses a condition variable with the goal of letting one thread know
about a result computed by a second thread.

1 #include <pthread.h>

2 #include <stdlib.h>

3 #include <stdio.h>

4 #include <time.h>

5

6 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

7 pthread_cond_t condvar = PTHREAD_COND_INITIALIZER;

8 char *coin;

9

10 static void*

11 thread_A(void *_)

12 {

13 pthread_mutex_lock(&mutex);

14 coin = random() % 2 == 0 ? "head" : "tail" ;

15 printf("A %s \n " , coin);

16 pthread_cond_signal(&condvar);

17 pthread_mutex_unlock(&mutex);

18 return NULL;

19 }

20

21 static void*

22 thread_B(void *_)

23 {

24 pthread_mutex_lock(&mutex);

25 pthread_cond_wait(&condvar, &mutex);

26 printf("B %s \n " , coin);

27 pthread_mutex_unlock(&mutex);

28 return NULL;

29 }

30

31 int

32 main()

33 {

34 const int N_THREADS = 2;

35 void * (*f[])(void *) = { thread_B, thread_A };

36

37 srand(time());

38 pthread_t t[N_THREADS];

39 for (int i = 0; i < N_THREADS; i++)

40 pthread_create(t+i, NULL, f[i], NULL);

41

42 for (int i = 0; i < N_THREADS; i++)

43 pthread_join(t[i], NULL);

44 }

7

CS 3214 Midterm Spring 2023

a) (4 pts) What are the possible outputs of this program? For each possible output, state whether the
program will finish or not.

The possible outcomes are either A head (or A tail) followed by B head (or B tail) when
the program completes, or just A head (or A tail) in which case the program “hangs”,
that is, does not finish.

b) (4 pts) Complete the program so that thread B will reliably output the value of coin after it has
been set on line 14.

To that end, before line 25, add this statement

while (coin == NULL)

3.3 Semaphores (5 pts)

Consider all possible outputs of the following program:

1 #include <pthread.h>

2 #include <semaphore.h>

3 #include <stdio.h>

4

5 sem_t s1, s2;

6

7 static void* thread_A(void *_)

8 {

9 printf("A");

10 sem_post(&s1);

11 return NULL;

12 }

13

14 static void* thread_B(void *_)

15 {

16 printf("B");

17 return NULL;

18 }

19

20 static void* thread_C(void *_)

21 {

22 sem_wait(&s2);

23 printf("C");

24 return NULL;

25 }

26

27 static void* thread_D(void *_)

28 {

29 sem_wait(&s1);

30 printf("D");

31 sem_post(&s2);

32 return NULL;

33 }

34

8

CS 3214 Midterm Spring 2023

35 int main()

36 {

37 sem_init(&s1, 0, 0);

38 sem_init(&s2, 0, 0);

39

40 const int N_THREADS = 4;

41 void * (*f[])(void *) = { thread_A, thread_B,

42 thread_C, thread_D };

43

44 pthread_t t[N_THREADS];

45 for (int i = 0; i < N_THREADS; i++)

46 pthread_create(t+i, NULL, f[i], NULL);

47

48 for (int i = 0; i < N_THREADS; i++)

49 pthread_join(t[i], NULL);

50 }

Assuming that each possible output is equally likely, what is the probability that the output of this
program will start with AB? Justify your answer by showing your work.

Since the semaphores ensure that A is output before D and that D is output before C, but
do not impose any constraints on when B is output, the four possible outputs are ADCB, BADC,
ABDC, and ADBC, making the probability that it starts with AB 1

4 or 25%.

3.4 Threading Performance (4 pts)

(4 pts) Assume you are trying to optimize the performance of a multi-threaded Linux program that uses
32 threads and runs on a machine with 32 cores. The reported CPU utilization is 100% for about half
the cores, and about 0% for the other half. Moreover, the time utility reports that the program’s threads
spend most of their time inside the kernel.

Given this information, describe 2 possible ways in which to improve the performance of this program
and describe how they would affect the symptoms described!

i) The low CPU utilization on half the cores is indicative of unnecessary serialization, which
could be addressed by breaking up the program’s lock or locks (if possible), which would
increase parallelism and therefore CPU utilization.

ii) The large amount of time spent in the kernel can indicate high lock contention (that is,
the slow path where a thread is blocked in the kernel because it tries to acquire a mutex
held by another thread is taken often.) A possible (additional) countermeasure here is
to decrease the amount of time executing while holding the lock (shortening the critical
section) to reduce the likelihood of this happening.

Other answers may include a redesign to avoid shared state in the first place, such as replication
or partitioning, or also the use of lock-free algorithms.

3.5 Deadlock (4 pts)

A multithreaded program uses 3 threads and 3 mutexes labeled mA, mB, and mC . In most sections of
its code, only a single mutex is acquired and later released before any other mutex is acquired. However,
thread 1 has one section in its code where it first acquires mA and then it acquires mB before releasing mA,
whereas thread 3 has a section in its code where it first acquires mC and then mA, also before releasing

9

CS 3214 Midterm Spring 2023

mC . The locks are released in the opposite order in which they are acquired and all locks are held for a
finite amount of time.

Can a deadlock occur in this situation? Justify your answer.

No deadlock can occur because not all four necessary conditions for deadlock are met. In
particular, a circular wait cannot occur since the locking order mC → mA → mB is maintained
when multiple locks are requested.

4 Development and Linking (23 pts)

4.1 Whose job is it anyway? (7 pts)

For each of the tasks below, specify which of the C compiler toolchain programs traditionally performs it:
Choose from: preprocessor, compiler, assembler, linker

a) expand macro definitions preprocessor

b) create a relocatable object file (.o) from an assembly file (.s) assembler

c) resolve local variable references to concrete addresses compiler

d) resolve include files preprocessor

e) create an executable binary from a collection of object files (.o) linker

f) resolve global variable references to concrete addresses or offsets linker

g) resolve function calls to functions defined in other .o files to addresses linker

4.2 Where will x end up? (6 pts)

As we learned in class, an ELF binary has different segments where it puts different information relevant
to the program, which will map to different regions in memory when the program runs. For the following
examples, identify where x will reside from the following choices:

Choose from: .data, .rodata, .bss, .text, stack, heap, nowhere (nothing is defined)

a) int x; // at the top level, i.e., outside any function .bss

b) const int x = 100; // at the top level, i.e., outside any function .rodata

c) int x(void) { return 0; } .text

d) void foo(void) { int x; ... } stack

e) static int x[100]; .bss

f) extern void x(void); nothing

4.3 Fully statically linked binaries vs. dynamically linked binaries (4 pts)

Select whether the following are downsides of fully statically linked binaries:

a) they result in larger binaries

□✓ yes / □ no

10

CS 3214 Midterm Spring 2023

b) they do not contain all library dependencies, thus relying on the system libraries

□ yes / □✓ no

c) they must be rebuilt on every library change/update

□✓ yes / □ no

d) they cannot make use of link time optimization

□ yes / □✓ no

4.4 Linker Errors (6 pts)

Consider the following header file header.h:

// begin header.h

int abc;

extern void ext_fun(void);

extern void module2_fun(void);

// end header.h

and the C source files module1.c and module2.c:

// begin module1.c

#include "header.h"

int

main() {

ext_fun();

module2_fun();

}

// end module1.c

// begin module2.c

#include "header.h"

void module2_fun(void)

{

// implementation here

}

// end module2.c

a) (1 pts) What command would a user issue to compile these files into object modules (.o files)?

gcc -c module1.c module2.c

or, separately

gcc -c module1.c

gcc -c module2.c

b) (1 pt) What command would a user issue to link the resulting .o files into an executable called main?
Assume that the user will not include any external libraries in this command.

gcc -o main module1.o module2.o

11

CS 3214 Midterm Spring 2023

c) (4 pts) List all errors the linker will produce when linking these files using the command in part b).
(Assume that the user uses gcc 10 or later.)

The errors include a “multiple definition” error related to abc and an “undefined reference”
error related to ext fun:

/opt/rh/gcc-toolset-12/root/usr/bin/ld: module2.o:(.bss+0x0): multiple definition

of `abc'; module1.o:(.bss+0x0): first defined here

/opt/rh/gcc-toolset-12/root/usr/bin/ld: module1.o: in function `main':

module1.c:(.text+0x5): undefined reference to `ext_fun'

collect2: error: ld returned 1 exit status

12

	Operating System Concepts (19 pts)
	Basic OS Ideas (5 pts)
	BLOCKED processes (7 pts)
	To syscall or not to syscall (7 pts)

	Unix Processes and IPC (27 pts)
	Four forks (8 pts)
	Pipes, I/O redirection, and posix_spawn (8 pts)
	System Calls and I/O (5 pts)
	Know Your Shell (6 pts)

	Multithreading (31 pts)
	Threads and Variables (10 pts)
	Condition Variables (8 pts)
	Semaphores (5 pts)
	Threading Performance (4 pts)
	Deadlock (4 pts)

	Development and Linking (23 pts)
	Whose job is it anyway? (7 pts)
	Where will x end up? (6 pts)
	Fully statically linked binaries vs. dynamically linked binaries (4 pts)
	Linker Errors (6 pts)

