
CS3214 Spring 2022 Exercise 0

Due Date: see website

In this class, you are required to have familiarity with Unix commands and Unix pro-
gramming environments. The first part of this exercise is related to making sure you are
comfortable in our Unix environment. The second part relates to the use of basic com-
mand line and standard I/O facilities from the application’s developer perspective. The
third part focuses on the difference between byte and character streams.

1 Using Linux

It is crucial that everybody become productive using a Unix command line, even if the
computer you are using daily is a Windows or OSX machine. Working on the command
line requires working knowledge of a shell such as bash, fish, or zsh, but it also requires
an understanding of the most common system commands and how the shell interacts
with these commands and with user programs.

Please do the following, then answer the questions below.

• Remote Terminal Access. Make sure your personal machine has an ssh client in-
stalled. Set your machine up for public key authentication when logging on to
rlogin.cs.vt.edu. Use ssh-keygen to create a key.

There is also an web interface provided by the department that allows you to create
a key pair at https://admin.cs.vt.edu/my-ssh-keys/. In this case, you will
not maintain continuous possession of the private key from its inception (and thus
should use this key only for your SLO account).

At the end of this step, you should be able to ssh into rlogin without having to type
a password.

• Command-line Editing. Make sure you know how to use the command line editing
facilities of your shell. For bash users, which most of you are by default, examine the
effect of the following keys when editing: d̂, TAB, â, ê, r̂, k̂, and ŵ. Then memorize
these keystrokes, making them part of your finger memory.

Examine the effect of the following keys when you invoke a program: ĉ, ŝ, q̂ (̂x
stands for Ctrl-x.)

• Shell Customization. Customize your shell and create a custom prompt and any
aliases you may need. A custom prompt typically includes the name of the machine
you’re on and at least part of the pathname of the shell’s current directory as when
setting PS1 to [\u@\h \W]\$

• Terminal Editors. Make sure you know how to use at least one command line
editor, such as vim, nano, pico, or emacs. We recommend vim, an editor that “can
match the speed at which you think.”

1

https://admin.cs.vt.edu/my-ssh-keys/
https://missing.csail.mit.edu/2020/editors/
https://missing.csail.mit.edu/2020/editors/

CS3214 Spring 2022 Exercise 0

• Visual Studio Code. Many students set up a remote environment that allows them
to use an IDE on their computer. Notably, Microsoft’s Visual Studio Code provides
an extension that provides a remote environment within the IDE that is well inte-
grated. Although not mandatory, we highly recommend that you do this as well.
The TAs will share instructions on how to do that.

Answer the following questions:

1. Based on the specific method you chose to set up key authentication you will have
created a file with a corresponding name that represents your identity. What is the
name of that file and on which computer is it stored?

2. You also needed to inform the rlogin system by providing the public key derived
from the private key that represents your identity. What entry did you need to add
to which file?

3. The tilde ~ is a shell shortcut. What is the output of running echo ~ on an rlogin
cluster machine? What is the output of running echo ~cs3214?

4. Make sure that ~cs3214/bin is part of your PATH variable when you log on. To
test it, log off and log on again, then type echo $PATH. When we say ~cs3214/bin
must be part of your PATH we are somewhat imprecise – what is the actual string
that represents the directory that must be a component of your PATH?

5. How many machines are part of the rlogin cluster (Hint: visit http://rlogin.cs.vt.edu/)
this semester? Include only those whose names are derived from trees, e.g. “birch.”

6. Make sure your bash prompt includes your username, the name of the current ma-
chine, and a suffix of the current directory. To prove it, copy the value of your $PS1
variable here.

7. Some filenames in your home directory start with a dot. When you type ls, these
are not shown. How can you list those files or directories?

8. Define an alias for rm, such as alias rm=’rm -i’ and make sure the alias is in
effect every time you log on. To which startup file did you add the alias definition?

9. The diff Unix command compares two files line by line. It is typically used to create
“patch files” which capture a change made to one or more related files.

When applying this patch

--- hellodiff.c.old 2022-01-14 00:32:46.992523229 -0500
+++ hellodiff.c 2022-01-14 00:32:53.603471532 -0500
@@ -4,7 +4,7 @@
main()
{

printf("The unified diff format is one of the most commonly used formats\n"
- "to express differences between two versions of a file"
+ "to express differences between two versions of a file\n"

"Reading and interpreting patches given in this format is a\n"

2

CS3214 Spring 2022 Exercise 0

"frequent task for any software engineer.\n");
}

to this file:

#include <stdio.h>

int
main()
{

printf("The unified diff format is one of the most commonly used formats\n"
"to express differences between two versions of a file"
"Reading and interpreting patches given in this format is a\n"
"frequent task for any software engineer.\n");

}

and then compiling and running the resulting program, what output do you obtain?

10. Which Unix group or group(s) are you currently a member of on our cluster?

11. Under standard Unix permissions, if a directory has permissions drwx------ who
can access it?

2 Understanding Command Line Arguments and Standard
I/O in Unix

In the past, we observed that some students coming into CS 3214 did not understand how
programs access their command line arguments and how they make use of the standard
input/output facilities, which present one of the basic abstractions provided by an oper-
ating system. Some students came with the mistaken impression that “standard input”
and “standard output” represents input or output from/to some kind of “console.”

3

CS3214 Spring 2022 Exercise 0

Application Side Note. Deep knowledge of Unix is an absolute prerequisite for any-
one wanting to learn or work with containers. As an example, consider this excerpt
[link] of a script used to set up the container in which this semester’s Discourse server
runs:
run_image=‘cat $config_file | $docker_path run $user_args \

--rm -i -a stdin -a stdout $image ruby -e \
"require ’yaml’; puts YAML.load(STDIN.readlines.join)[’run_image’]"‘

This command sets a variable run_image to contain the data produced by the stan-
dard output stream that results from running the pipeline that is enclosed in back-
quotes. This pipeline consists of 2 commands: the command cat, which is given
1 argument (taken from the value of $config_file) and whose standard out-
put is “piped” into the command given by the $docker_path variable (probably
docker), which is invoked with 12 arguments, the last one being a Ruby program
that will be run inside the container, but which can access as its standard input
(STDIN) the data written to cat’s standard output. Being able to understand what
commands like this one do is a motivation for this exercise (and hopefully, the fol-
lowing exercise and project will provide an even deeper understanding).

To practice this knowledge, write a C program that concatenates a combination of given
files and/or its standard input stream to its standard output stream. The exact specifica-
tion is as follows.

Your program should be called concatenate.c.

When compiled and invoked without arguments, it should copy the content of its stan-
dard input stream to its standard output stream. “Standard input” and “standard output”
are standard streams that are set up by a control program that starts your program (often,
the control program is a shell).

When invoked with arguments, it should process the arguments in order. Each argument
should be treated as the name of a file. These files should be opened and their content
should be written to the standard output stream, in the order in which they are listed on
the command line. If the name of any file that is provided is - (a single hyphen), then the
program should read and output the content of its standard input stream instead in this
place.

If any of the files whose names are given on the command line do not exist, the program’s
behavior is undefined.

Your C program may make use of C’s stdio library (e.g., the family of functions including
fgetc, etc.), or it may use system calls such as read() or write() directly. You should
buffer data to avoid frequent system calls, but you may not assume that it is possible to
buffer the entire file content in memory all at once.

Implementation Requirement: to make sure you understand the uniformity provided
by the POSIX C API, we require that your program define a function, and then use this
function to copy the data contained in files as well as the data it reads from its standard

4

https://github.com/discourse/discourse_docker/blob/990519e2373ec32055a7742a407e81f4bd606ed4/launcher#L498-L499
https://en.wikipedia.org/wiki/Standard_streams

CS3214 Spring 2022 Exercise 0

input stream. Your program’s main() function will then call this single function multiple
times, as needed. In other words, do not special case standard input/output by provid-
ing a separate code path for standard input/output that makes use of facilities such as
getchar() that implicitly refer to the standard input stream. Your code should be DRY.

You may use the script test-concat.sh to test your code.

3 Understanding how to access the Standard Input and Out-
put Streams in your Preferred Language

Standard input and output are not concepts that are specific to the use of C. Choose a
language of your choice that is not C (e.g. C++, Go, Ruby, Java, Python 2, Python 3,
JavaScript, etc. etc.) and implement the above concatenate program in this language.1

You may use all functions that are part of the language’s standard library, but not func-
tionality that requires the installation of extra libraries.2

If your language cannot be compiled into an executable, and also cannot be executed
directly by an interpreter using the Shebang/Hash-bang convention, you will need to
create a wrapper script so you can test it.3 This wrapper script is required for Java, it
should invoke your program, passing any command line arguments it receives to it.

As described in the Bash Hacker’s Wiki you can use the "$@" shorthand to refer to the
script’s arguments, which are passed onto the Java program:

#!/bin/sh
save this file as wrap-java.sh

java -Xmx120m Concatenate "$@"

Side Note. Some of you may never have invoked a Java program on the command
line. It is done by compiling the Java code using javac Concatenate.java fol-
lowed by java Concatenate ... to start the compiled program, where ...
stands for the arguments being passed to it. Recent JDK versions permit the combi-
nation of these steps by supporting the invocation java Concatenate.java ...,
essentially accommodating what used to be a frequent beginner’s mistake, which is
to ask the JVM to run an uncompiled program.

1If you choose C++ or Rust, you must use C++’s or Rust’s standard library, not C’s.
2Depending on the language, what constitutes part of a language and what is “external” can be some-

what fuzzy: for the purposes of this exercise, the deciding criterion will be the ability to access this func-
tionality without requiring additional installation steps. For example, in Java, you may use all of java.
but not Apache Commons or Guava. In Javascript, you may use functionality that is provided by node.js,
but not functionality that requires the installation of npm packages. Similar calls can be made for other
languages.

3Don’t submit the wrapper script though, our grader will identify the language and create its own script
when necessary.

5

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://wiki.bash-hackers.org/scripting/posparams#all_positional_parameters

CS3214 Spring 2022 Exercise 0

You should use test-concat.sh to test by passing the name of your script or exe-
cutable as an argument.

Java is an exception here: although the JVM is an ordinary Unix process, it makes certain
assumptions about how much memory is available to it, which means it will not run well
when this memory is limited from the outside. For Java implementations, you should run
the test with:

SKIP_MEMORY_LIMIT=yes ./test-concat.sh ./wrap-java.sh

and make sure that the memory your program uses is instead limited in wrap-java.sh
via the -Xmx flag.

What does SKIP_MEMORY_LIMIT=yes do? Whenever you prefix a command you
type in bash with ENVVAR=value, bash will set an environment variable ENVVAR
and give it the specific value before starting the program that follows. This vari-
able is temporary in that it is in effect only during the execution of the command
the user is running. This is a common way to influence the execution of programs
without requiring other options such as configuration files or command line param-
eters. The programs so controlled will use the getenv() function to retrieve the
value of these variables. If the program being run is a shell script, as in the case of
test-concat.sh, they can access it directly.
You are encouraged to read test-concat.sh as it provides more examples of how
to run programs on the command line. It also shows the different ways in which a
shell can control a program’s standard input streams.

Hint: most higher-level languages allow compact implementations of these tasks. For
instance, a Python 2 implementation is 13 lines long (my Python 3 implementation is 22
lines long).

Implementation Requirement: the implementation requirement is the same. Do not
special case standard input/output, use a single function. Unlike for C, this single func-
tion may be one that you write, but some languages provide a suitable function in their
standard library that you may be able to find.

Efficiency. You should use buffered forms of input and output in order to reduce the
number of system calls your program makes. For instance, in C, the stdio library provides
such buffering by default if you use fgetc() or fread(), whereas if you use the lower-
level read() call directly you will need to make sure that you do buffering yourself
(in other words, read multiple bytes at once rather than a single byte in each call). The
autograder will run your program under a suitable timeout that is designed to eliminate
submissions that lack buffering.

Use of Byte Streams. For both parts 2 and 3, your program must not attempt to interpret
the content of the streams it reads and writes in any way. In other words, it should output

6

CS3214 Spring 2022 Exercise 0

the bytes (octets) that appear in the input as they appear, without making assumptions
or processing them in any way. This includes the possible occurrence of the byte value
0x00, which may occur any number of times in the input and must be copied into the
output.

Similarly, the byte value 0x0A (aka LF, or LINEFEED character) may occur any number
of times. Your program should not assign special significance to either of them, so do not
assume (a) that data read can be represented as zero-terminated C-style strings, and (b)
do not assume that the input can be broken into lines efficiently. (The worst case input
would be a sequence that didn’t contain any LF characters at all.)

Avoid Character-based Input Routines. Many real-world programs process input that
is thought to represent characters, which has contributed to the fact that the I/O libraries
of some higher-level languages default to the assumption that programmers will want
to input and/or output character streams in some valid encoding when accessing file
streams. Note that character streams are abstractions built on top of byte streams - at the
process/OS boundary all I/O is byte-based (this is true for at least the vast majority of
contemporary environments).

The most commonly used character set today is the Unicode character set, and the encod-
ing that is most commonly used is UTF-8. For instance, nearly all web content uses this
character set and encoding. In the UTF-8 encoding, the unicode character U+263A is en-
coded as a 3-byte sequence 0xE2 0x98 0xBA in UTF-8. While any sequence of Unicode
characters can be encoded into a sequence of bytes, the opposite is not true: not every
sequence of bytes represents a valid encoding of some characters. 4

For the two implementations of concatenate you’re being asked to implement, do not as-
sume that the input represents characters in any valid encoding. Specifically, the input
data may not represent a valid UTF-8 encoding, and therefore, attempts to interpret it
as UTF-8 data and decode it will fail for some tests, resulting in exceptions and/or data
corruption. This means that you must be careful to avoid the default implementation in
those languages that default to imposing a character stream abstraction, which include
Python 3 and Java. Instead, you will need to examine their API and find the correspond-
ing constructs that give you access to byte-based streams, which are sometimes referred
to as “binary” forms of input or output.

4 Understanding Character-Based I/O

In this part of the exercise, you will implement a simple utility that interprets its standard
input stream as a stream of UTF-8 encoded Unicode characters which it then counts. If the

4For those wanting to learn more about the rationale behind UTF-8, I recommend The history of UTF-8
as told by Rob Pike which describes how Ken Thompson invented UTF-8 in one evening and how they
together built the first system-wide implementation in less than a week.

7

http://doc.cat-v.org/bell_labs/utf-8_history
http://doc.cat-v.org/bell_labs/utf-8_history

CS3214 Spring 2022 Exercise 0

standard input contains a valid encoding of Unicode characters, the utility should output
the number of such characters; else it should report an error and abort5. This is similar to
the Unix tool ‘wc -m‘ which counts the number of Unicode characters in the input stream,
except that ‘wc -m‘ ignores if the input stream is not in a valid encoding.

Write a program unicodecount.c using only functions that are part of the C standard
library. You may use the fgetwc (easiest) or the mbrtowc functions, or identify the
length of each encoded Unicode character manually. Your program must use buffering
as well. Remember to use the setlocale(3) function to set the character type locale
(LC_CTYPE) to "en_US.utf8".

If the standard input stream does not consist of correctly encoded Unicode characters in
the UTF-8 transfer encoding, output:

Invalid or incomplete multibyte or wide character

else output the number of Unicode code points (each representing a Unicode character)
found in the input stream.

Finally, write the same program in a high-level language of your choice.

Unlike for the concatenate program, you only need to process the program’s standard
input stream and you do not need to handle the case where names of files are passed as
command line arguments.

You may use the script test-unicodecount.sh to test your code. Independent of the
size of the input stream, your program must not use more than 120MB of virtual memory
– this is how we will enforce that your program does not attempt to buffer the entire
content of its standard input stream in memory.

For Java users: For Java, we will again use SKIP_MEMORY_LIMIT=yes and instead
limit heap memory with an -Xmx120m switch. Furthermore, note that the Java Uni-
code API assumes an internal representation of Unicode strings as 16-bit values.
Thus, certain Unicode codepoints require 2 Java chars to represent them. Java calls
these “surrogate pairs.” Make sure to pay attention to the case where a surrogate pair
occurs at the boundary of your buffer. For instance, if a surrogate pair spans offset
127 and 128 (counting from 0), and you’ve read 128 characters into your buffer, you
will not be able to process this surrogate pair as you have read only the high surro-
gate character of this pair so far. You also can’t avoid this situation by reading all of
standard input into a single buffer upfront as that would violate the memory limit
requirement. A possible strategy is to check for the case where the last (16-bit) char-
acter read is a high surrogate and if so, store it and logically prepend it to the buffer
you use when processing the next chunk of input. Alternatively, use a more recently
designed language - Python 3, for instance, does not expose its internal character
representation in its Unicode support API.

5aborting is accomplished via the abort() function, which sends the SIGABRT signal to the process,
which then typically leads to its termination

8

CS3214 Spring 2022 Exercise 0

What to submit:

Submit a tar file with your answers, containing the files:

• answers.txt, a UTF-8 encoded text file with your answers,

• a C file concatenate.c containing your implementation for part 2,

• a C file unicodecount.c containing your C implementation for part 4,

• a file concatenate.? with a suitable suffix containing your implementation for
part 3 in another language,

• a file unicodecount.? with a suitable suffix containing your implementation for
part 4 in another language.

Do not submit compiled executables. All 4 required programs are short programs.

Hint: when preparing your submission, avoid the following mistake. To produce a tar
file to submit, run

tar cvf ex0submission.tar answers.txt concatenate.c unicodecount.c ...

where in place of the dots you put the names of the files containing your high-level lan-
guage implementations. This will create a file ex0submission.tar6 as an archive con-
taining answers.txt, concatenate.c, and so on.

Don’t do

tar cvf answers.txt concatenate.c unicodecount.c ...

Because that would create an archive answers.txt containing concatenate.c and so
on... in the process, and would, without warning, clobber the existing answers.txt file
you’ve just spent an hour creating.

6the name you choose doesn’t actually matter to our submission system

9

	Using Linux
	Understanding Command Line Arguments and Standard I/O in Unix
	Understanding how to access the Standard Input and Output Streams in your Preferred Language
	Understanding Character-Based I/O

