
CS 3214 Spring 2022 Final Exam Solution

May 9, 2022

Contents

1 Networking (30 pts) 2
1.1 Know Your Internet (8 pts) . 2
1.2 Read It Online (6 pts) . 3
1.3 A ROT13 Server (16 pts) . 4

2 Virtual Memory (18 pts) 8
2.1 A Case of Cache Busting (10 pts) . 8
2.2 MAP POPULATE (8 pts) . 10

3 Automatic Memory Management (12 pts) 11

4 Heap Overwrites (18 pts) 13

5 Virtualization and Containers (9 pts) 15

6 Container Woes (13 pts) 16

1

Rules

• This exam is open book, open notes, and open Internet, but in a read-only way.

• You are not allowed to post or otherwise communicate with anyone else about these
problems. This includes sites such as chegg.com, which will be monitored. The open
Internet stipulation does not apply to such sites.

• You are required to cite any sources you use, except for lecture material, source code
provided as part of the class material, and the textbook. Failure to do so is an Honor
Code violation.

• If you have a question about the exam, you may post it as a private question on
Discourse addressing the instructors (account names: @Godmar Back and @djwillia
and @Liting Hu). If your question is of interest to others, we will make it public as
a clarification or hint.

• During the test period, you may not use Discourse to post other questions or reply
to questions posted there.

• Any errata to this exam or hints given will be published prior to 12h before the
deadline, please check Discourse under tag final.

1 Networking (30 pts)

1.1 Know Your Internet (8 pts)

Find out if the following statements related to networking are true or false. If true, just
write true. If false, write false and provide the corrected statement.

(a) By separating the business logic of an application from its presentation logic, a multi-
tier architecture makes Internet applications much more flexible to changes.

True.

(b) The dominant transport layer protocol today is called HTTP.

False. Today’s dominant transport layer protocol is TCP (or TCP/UDP).

(c) When determining the destination socket for a received IP datagram that carries a
TCP segment, the receiving host must consider both the sender’s IP address and
port and the destination’s IP address and port.

True.

2

(d) In TCP, the number of bytes that one party may send before receiving an acknowl-
edgement from the other side is fixed by design.

False. The TCP window size is configurable.

(e) Cryptographically signed tokens allow a server to validate a user’s identity even
when the user provided their authentication credentials to a different server (called
an identity provider.)

True.

(f) The network layer uses the transport layer to ensure the reliable delivery of network
packets.

False. The transport layer ensures reliable delivery in the presence of a network
layer that provides only unreliable delivery.

(g) If the transition from IPv4 to IPv6 goes according to plan, IPv4 traffic will eventually
fade out even before users disable IPv4 on their networks.

True.

(h) The design of custom transport layer protocols such as QUIC requires changes to the
OS kernel because all network protocol processing takes place inside the kernel.

False. QUIC, for instance, is implemented at the user level inside a library in the
Chrome browser.

1.2 Read It Online (6 pts)

In a blog post1 designed to attract search engine traffic, an author writes the following
about the purported differences between HTTP and TCP:

The Main Differences Between HTTP and TCP

• HTTP typically uses port 80 – this is the port that the server “listens to”
or expects to receive from a Web client. TCP doesn’t require a port to do
its job.

• HTTP is faster in comparison to TCP as it operates at a higher speed and
performs the process immediately. TCP is relatively slower.

• TCP tells the destination computer which application should receive data
and ensures the proper delivery of said data, whereas HTTP is used to
search and find the desired documents on the Internet.

1HTTP vs TCP - What’s the difference?

3

https://www.goanywhere.com/blog/http-vs-tcp-whats-the-difference

• TCP contains information about what data has or has not been received
yet, while HTTP contains specific instructions on how to read and process
the data once it’s received.

• TCP manages the data stream, whereas HTTP describes what the data in
the stream contains.

• TCP operates as a three-way communication protocol, while HTTP is a
single-way protocol.

In these six bullet points, the author managed to bury several contortions, misrepresenta-
tions, or downright misinformation.

Select two of these erroneous or misrepresented statements. Briefly explain why they
do not make sense and provide a correct explanation.

[Solution.]

• TCP does require the use of port numbers to allow the OS to identify the process(es)
that are the endpoints of the connection.

• Because HTTP (usually) runs on top of TCP the statement that “HTTP is faster in
comparison to TCP” is meaningless.

• HTTP does not support “search(ing) and find(ing) the desired documents on the
Internet” - it is a protocol used to retrieve objects based on their known URL. There
are no search facilities built into HTTP.

• HTTP does not “contain specific instructions on how to read and process the data
once it’s received.” (HTTP responses contain a Content-Type header, but the client
decides how process content of each type.)

• TCP is not a “three-way communication protocol,” it has a three-way handshake
used by the two parties during the connection establishment phase.

• HTTP is not “single-way protocol,” it involves two parties as well. It is also fairly
symmetric, allowing both uploads (via PUT or POST) and retrievals (via GET).

1.3 A ROT13 Server (16 pts)

The ROT13 protocol is a new request/response protocol to retrieve files and send them
encrypted over the network using the ROT13 substitution cipher.

Details of the protocol are still under development, but you were able to secure an
strace log of a transaction performed by a prototype ROT13 server. You were also able
to learn how a ROT13 client works because you witnessed an invocation using the netcat
program (nc) and Unix pipes, which looked like this:2

2Note that echo appends a single newline character here.

4

https://en.wikipedia.org/wiki/ROT13

$ echo 'ROT13 secret.txt' | nc hazelnut 20000

Tbbq yhpx jvgu gur svany!

Here, secret.txt is the name of the file to be retrieved in ROT13 encryption. This file
must exist in the directory in which the server ran.

The strace of the server, when run with

strace -v -s 1024 -o log ./rot13 20000

is shown below:

write(1, "calling getaddrinfo\n", 20) = 20

[... system calls made by getaddrinfo are elided...]

write(1, "getaddrinfo returned\n", 21) = 21

socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP) = 3

setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0

bind(3, {sa_family=AF_INET6, sin6_port=htons(20000), sin6_flowinfo=htonl(0),

inet_pton(AF_INET6, "::", &sin6_addr), sin6_scope_id=0}, 28) = 0

listen(3, 500) = 0

accept(3, {sa_family=AF_INET6, sin6_port=htons(47698), sin6_flowinfo=htonl(0),

inet_pton(AF_INET6, "::ffff:192.168.5.104", &sin6_addr), sin6_scope_id=0},

[128 => 28]) = 4

setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0

write(2, "Accepted connection from ::ffff:192.168.5.104:47698\n", 52) = 52

read(4, "ROT13 secret.txt\n", 4097) = 17

openat(AT_FDCWD, "secret.txt", O_RDONLY) = 5

fstat(5, {st_dev=makedev(0, 0x42), st_ino=19682582745, st_mode=S_IFREG|0644,

st_nlink=1, st_uid=14913, st_gid=16151,

st_blksize=1048576, st_blocks=8, st_size=27, st_atime=1651687994

/* 2022-05-04T14:13:14.384810192-0400 */, st_atime_nsec=384810192,

st_mtime=1651687994 /* 2022-05-04T14:13:14.384810192-0400 */,

st_mtime_nsec=384810192, st_ctime=1651687994

/* 2022-05-04T14:13:14.384810192-0400 */, st_ctime_nsec=384810192}) = 0

mmap(NULL, 27, PROT_READ|PROT_WRITE, MAP_PRIVATE, 5, 0) = 0x7f9095f19000

write(4, "\nTbbq yhpx jvgu gur svany!\n", 27) = 27

close(4) = 0

close(3) = 0

exit_group(0) = ?

+++ exited with 0 +++

(this strace has irrelevant details elided, you can access the full strace on the class
website).

5

Reconstruct rot13.c so that it implements the ROT13 service.
Your implementation should be subject to the following conditions:

• When started, your server should accept a single command line argument which is a
string denoting the port number on which the server should listen. (In the example
above, the server was invoked with ./rot13 20000.)

• From clients, your server should accept ROT13 requests for any filename consisting
of alphanumerical characters (not including slashes).

• Your server should accept and handle a single client connection and then exit.

• Your server must use mmap() to access the file content, but it must not change the
file on disk. (Hint: investigate the difference between MAP SHARED and MAP PRIVATE

and use the correct flag.)

• To save time, you should use the following routine to perform the ROT13 encryption:

// In-place ROT13 cipher

static void

rot13(unsigned char *b, size_t n)

{

for (size_t i = 0; i < n; i++) {

switch (b[i]) {

case 'a'...'z':

b[i] += 13;

if (b[i] > 'z') b[i] -= 'z' - 'a' + 1;

break;

case 'A'...'Z':

b[i] += 13;

if (b[i] > 'Z') b[i] -= 'Z' - 'A' + 1;

break;

}

}

}

• You may use socket.c and socket.h. A copy will be provided on the class website,
which is a slightly modified version of the one used in project 4.

• For the purposes of this problem, you may assume a friendly (non-malicious) client,
so you do not need to check for protocol violations or IDOR attacks.

• Your server must handle short reads.

6

[Solution.]

// solution

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <string.h>

#include <stdlib.h>

#include <pthread.h>

#include <assert.h>

#include <fcntl.h>

#include <sys/mman.h>

#include <semaphore.h>

#include "socket.h"

// In-place ROT13 cipher

static void

rot13(unsigned char *b, size_t n)

{

for (size_t i = 0; i < n; i++) {

switch (b[i]) {

case 'a'...'z':

b[i] += 13;

if (b[i] > 'z') b[i] -= 'z' - 'a' + 1;

break;

case 'A'...'Z':

b[i] += 13;

if (b[i] > 'Z') b[i] -= 'Z' - 'A' + 1;

break;

}

}

}

static void *

server(void *_arg)

{

int client = socket_accept_client(accsoc);

int accsoc = socket_open_bind_listen((char *)_arg, 500);

7

#define MAX 4096

char buf[MAX+1] = { 0 };

size_t bread = 0;

size_t totalread = 0;

while (totalread < MAX &&

(bread = read(client, buf + totalread, sizeof buf - totalread)) > 0) {

totalread += bread;

if (memchr(buf, '\n', totalread))

break;

}

char *path = NULL;

sscanf(buf, "ROT13 %ms\n", &path);

printf("ROT13 `%s'\n", path);

int fd = open(path, O_RDONLY);

free(path);

struct stat st;

fstat(fd, &st);

void *addr = mmap(NULL, st.st_size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);

rot13(addr, st.st_size);

write(client, addr, st.st_size);

close(client);

close(accsoc);

return NULL;

}

int

main(int ac, char *av[])

{

server(av[1]);

}

2 Virtual Memory (18 pts)

2.1 A Case of Cache Busting (10 pts)

The well-known performance engineer Brendan Gregg reports in a blog post from Aug 30,
20213 about a performance incident at Netflix.

3You can find the full blog post (which includes pictures and graphs) here: Analyzing a High Rate of
Paging

8

https://www.brendangregg.com/blog/2021-08-30/high-rate-of-paging.html
https://www.brendangregg.com/blog/2021-08-30/high-rate-of-paging.html

Gregg reports:

A service team was debugging a performance issue and noticed it coincided
with a high rate of paging. (...)

The microservice managed and processed large files, including encrypting them
and then storing them on S3. The problem was that large files, such as 100
Gbytes, seemed to take forever to upload. Hours. Smaller files, as large as 40
Gbytes, were relatively quick, only taking minutes.

A cloud-wide monitoring tool, Atlas, showed a high rate of paging for the larger
file uploads. (...) the iostat(1) tool showed a high rate of disk I/O during a
large file upload (...)

There [was] not much memory left, 349 Mbytes, but more interesting is the
amount in the buffer/page cache: 48,643 Mbytes (48 Gbytes). This is a 64-
Gbyte memory system, and 48 Gbytes is in the page cache (the file system
cache).

This shows many cache misses, with a hit ratio varying between 6.5 and 74%.
I usually like to see that in the upper 90’s. This is “cache busting.” The 100
Gbyte file doesn’t fit in the 48 Gbytes of page cache, so we have many page
cache misses that will cause disk I/O and relatively poor performance.

The quickest fix is to move to a larger-memory instance that does fit 100 Gbyte
files. The developers can also rework the code with the memory constraint
in mind to improve performance (e.g., processing parts of the file, instead of
making multiple passes over the entire file).

Answer the following questions:

(a) (3 pts) When the system experienced the “performance issue,” did it likely make full
use of its CPU(s)? Justify your answer.

[Answer.] No, it did not make full use of its CPUs.

As a matter of fact, Gregg shows the percentage of time the CPUs were idle in part
2, ranging from 92.18% to 54.11%. The comment “Reads usually have apps waiting
on them” indicates this as well - processes are in the blocked state because they are
waiting for data to be retrieved from disk.

(b) (5 pts) How did Gregg conclude that the workload in question must have “made
multiple passes over the entire file?” Relate your answer to the decisions that Linux’s
page replacement algorithm must have made.

[Answer.] Based on the diagnostic tools, Gregg observed that the program was
spending much of its time being blocked reading data from disk in order to process

9

it. This was considered a “performance issue” so we can rule out that cold misses
(bringing the on-disk data into the (page cache’s) memory upon first access) was the
issue of concern here. Instead, repeated accesses to the data must have occurred,
and the data must have been evicted between these accesses (so that it needed to be
refetched again). This is consistent with the behavior of a page replacement algo-
rithm that uses a LRU (or LRU-like) replacement policy in the presence of multiple
(looping) sequential accesses to the file.

For example, consider an access pattern of 1-2-3-4-1-2-3-4-1-2-3-4 for a memory of
size 3: under an LRU replacement policy, it causes 4 cold (for 1-2-3-4) and 8 capacity
misses (the access to 4 evicts 1, 1 evict 2, 2 evicts 3, and so on.)

Another way to put this is that the “working set” of this workload exceeded the
size of the physical memory, meaning that it is impossible to execute the workload
efficiently.

(c) (2 pts) When Gregg talks about “moving to a 100GB” instance, is he referring to the
size of virtual memory or the size of physical memory?

[Answer.] This is referring to the size of physical memory. (Or, if this is a virtual
machine instance, a guaranteed allotment of 100GB of physical memory.)

2.2 MAP POPULATE (8 pts)

A CS3214 student was using mmap to read from a file residing on a filesystem on a magnetic
disk for processing in their program. The file is large, but not so large that it does not
fit in main memory. The student, having learned that man pages are very useful, began
reading about different flags to mmap, and found one called MAP POPULATE:

MAP_POPULATE (since Linux 2.5.46)

Populate (prefault) page tables for a mapping. For a file

mapping, this causes read-ahead on the file. This will

help to reduce blocking on page faults later. The mmap()

call doesn't fail if the mapping cannot be populated (for

example, due to limitations on the number of mapped huge

pages when using MAP_HUGETLB). MAP_POPULATE is supported

for private mappings only since Linux 2.6.23.

(a) (4 pts) Suppose the student’s program was a data processing program that mmaped
the large file and then accessed it sequentially. In theory, should the student specify
the MAP POPULATE flag to mmap? What effect (if any) would specifying MAP POPULATE

have on the performance of the program? Justify your answer.

ANSWER: Yes, if the entire file will eventually fault in, MAP POPULATE
will enable the file to be loaded in without paying page fault costs to

10

lazily map in every page in the file, thereby enabling a potential speedup
of the total runtime of the program (as compared to the case without
MAP POPULATE).

(b) (4 pts) Suppose that instead, the student’s program only performed a handful of
small, random reads in the large file that was mmaped. In theory, should the stu-
dent specify the MAP POPULATE flag to mmap? What effect (if any) would specifying
MAP POPULATE have on the performance of the program? Justify your answer.

ANSWER: No, in this case, MAP POPULATE would slow down the total
runtime of the program because only a relatively small amount of the file
actually needs to be faulted in. MAP POPULATE would force the entire
file to be fetched unnecessarily.

3 Automatic Memory Management (12 pts)

Consider the following memory allocation profile for a program in some language that uses
a form of automatic memory management:

Allocated Memory

Live Memory

t1 t2 time

m
em

or
y

(a) (6 pts) Write a program in a language of your choice that would produce this memory
allocation time profile. Assume that no garbage collection takes place.

[Answer.] There are many ways to write this. In a Java-like language, the object
could be allocated and stored in an array, and subsequently become garbage like so:

Object [] obj = new Object[N];

for (int i = 0; i < N; i++)

11

obj[i] = new Object();

for (int i = 0; i < N; i++)

obj[i] = null;

A recursive function should as this one (assuming no optimizations are applied by
the compiler) could produce a similar pattern:

void recurse(int n) {

var obj = new Object();

if (n > 0) recurse(n-1);

}

(b) (3 pts) Now consider the point in time t1. If garbage collection took place at t1,
would it affect the allocation/time profile and if so, how?

[Answer.] It would not. At time t1, there is no garbage, so a garbage collector could
not free any allocated memory. Garbage is the difference between allocated and live
memory.

(c) (3 pts) Now consider the point t2. If garbage collection took place at t2, would it
affect the allocation/time profile and if so, how?

[Answer.] It would. At t2, a garbage collector would free all memory that is no
longer live, thus the remainder of the green line would shift down to the y coordinate
of the blue line at t2.

12

4 Heap Overwrites (18 pts)

A programmer has written a secure embedded program to remotely control the door locks
on a secure facility. In the text section, the program contains numerous functions, including
one called print username which prints a user’s name to the screen:

void print_username(struct N *n) {

printf("%s", n->name);

}

Another interesting function in the code is called unlock door, which resides at the virtual
address of 0x80020300.

The program is using a simple explicit dynamic memory manager that uses implicit
lists with boundary tags and immediate coalescing to manage the heap. A first fit selection
policy is used. After running the program for some time, the concrete heap state is as
shown in Figure 1.

Figure 1: The heap. Each box is 64-bits in size. Boundary tags (in blue) are displayed in
“size/alloc” format, with 63 bits forming a size field and one bit specifying whether the
chunk is allocated (1) or free (0).

Unfortunately, an attacker has gained the ability to perform an out of bounds write for
the array contained in the orange object of type struct v on the heap. The vulnerable
line is here, where v is a pointer to this object:

v->data[i] = val;

where val is a 64 bit attacker controlled value and, due to poor input sanitization, the
attacker also has control of the index i.

Your task is to answer the following questions about different scenarios of out-of-bounds
writes on the heap:

13

(a) (3 pts) What will be the immediate result if the attacker causes the following to
execute:

v->data[512] = 0xdeadbeef;

ANSWER: the program will immediately receive a segfault, because it is
writing in memory past the system break onto a page that has not been
mapped into the address space.

(b) (3 pts) What will happen on the next call to malloc(8) if the attacker causes the
following to execute:

v->data[11] = {.size=1000, .alloc=1};

ANSWER: The chunk that was previously free will now appear allocated
and very large, so on implicit list traversal, malloc will jump past the
system break and receive a segfault when trying to read the header of the
next chunk.

(c) (3 pts) What will happen on the next call to malloc(8) if the attacker causes the
following to execute:

v->data[14] = 0xdeadbeef;

ANSWER: Nothing will happen; this write is in the middle of a free
chunk. It eventually be overwritten when the newly allocated object is
initialized.

(d) (3 pts) What will happen if the program immediately frees the yellow object F after
the attacker causes the following to execute:

v->data[20] = {.size=20; .alloc=0}

ANSWER: Upon immediate coalescing, part of the orange object will be
erroneously marked as free with a newly written boundary tag, corrupting
the object.

(e) (3 pts) What will happen the next time the program calls print username with a
pointer to the green object N if the attacker causes the following to execute:

v->data[25] = 0x2144454B434148;

14

Assume that the architecture uses the Little Endian format to store multibyte inte-
gers.

ANSWER: The data in the green object will be silently overwritten so
that the string printed out from print username will read “HACKED!”

(f) (3 pts) What will happen the next time the function pointer in object F is called if
the attacker causes the following to execute:

v->data[22] = 0x80020300;

ANSWER: The attacker has managed to modify a function pointer in
the yellow object. When using the function pointer, the control flow of
the program will now call the unlock door function instead of what it was
supposed to call!

5 Virtualization and Containers (9 pts)

Find out if the following statements related to virtual machines and/or containers are true
or false.

If true, just write true. If false, write false and provide the corrected statement.

(a) Running virtual machines can migrate from one physical server to another without
disturbing normal operations or causing noticable downtime.

True.

(b) Some virtual machine monitors translate a guest kernel’s binary machine code instead
of directly executing it in deprivileged mode.

True.

(c) Container images are static bundles of files that describe the environment in which
a container instance will execute when it is started.

True.

(d) Container designs typically use a virtualized instruction set architecture (ISA) that
is different from the ISA associated with the hardware of the machine running the
container engine.

False. Containers do not modify the instruction set architecture.

(e) OS kernels often include accommodations that allows them to execute more efficiently
when running inside a virtual machine.

True.

15

(f) Layers in container filesystems refer to the 7-layer design as specified in the Open
Systems Interconnection model.

False. The OSI model is about layered design of networks.

(g) Before running your containerized application on another machine such as provided
by a commercial container service, you must ensure that the provider of the target
system has installed all of the necessary libraries that your application requires.

False. One of the major value propositions of containers is that all library
dependencies ship within the container image.

(h) Both virtual machines and containers are equally good tools for facilitating debugging
operating system kernels.

False. Virtual machines facilitate debugging operating system kernels be-
cause guest kernel crashes do not affect the host kernel. With containers,
there is only one kernel; thus kernel crashes take down the host making
debugging difficult.

(i) On a per instance basis, containers tend to need fewer physical resources such as
memory when compared to virtual machines.

True.

6 Container Woes (13 pts)

A CS3214 student learned about Linux containers and how they have their own private
chroot filesystem. So, the student decided to play around with containers from scratch,
by creating a new directory tree, containing the binary for a bash shell to poke around
inside the container with.

Here are the steps the student took. First, they copied bash from their local filesystem
into a directory that served as a staging area for what would become the container’s chroot
filesystem:

$ mkdir -p mychroot/bin

$ cp /bin/bash mychroot/bin/

The student then created the following Dockerfile in the working directory and built a
container named mycontainer using the Docker CLI. (Note: the docker build command
is taking a build context, which is where the Dockerfile and staging directory (mychroot)
reside. In this case it is specified as the current directory ’.’)

$ cat <<EOF > Dockerfile

FROM scratch

16

COPY mychroot/bin/bash /bin/bash

EOF

$ docker build -t mycontainer .

Emulate Docker CLI using podman. Create /etc/containers/nodocker to quiet msg.

STEP 1/2: FROM scratch

STEP 2/2: COPY mychroot/bin/bash /bin/bash

COMMIT mycontainer

--> bcc7380ddae

Successfully tagged localhost/mycontainer:latest

bcc7380ddae7ead1b539c4b2b36e5c38f4d2b4ee1f672d392b5cca9c7ca1ef3d

However, when running the container, the student encountered a bizarre error:

$ docker run --rm -it mycontainer "/bin/bash"

Emulate Docker CLI using podman. Create /etc/containers/nodocker to quiet msg.

standard_init_linux.go:228: exec user process caused: no such file or directory

The student double-checked the mychroot directory from which the container chroot
was built, and sure enough bash was there, as follows:

$ find mychroot/

mychroot/

mychroot/bin

mychroot/bin/bash

$ file mychroot/bin/bash

mychroot/bin/bash: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),

dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0,

BuildID[sha1]=0abac065ab1eb79dff27b1278df95da568034daa, stripped

$ ldd mychroot/bin/bash

linux-vdso.so.1 (0x00007ffee4772000)

libtinfo.so.6 => /lib64/libtinfo.so.6 (0x00007fab87f64000)

libdl.so.2 => /lib64/libdl.so.2 (0x00007fab87d60000)

libc.so.6 => /lib64/libc.so.6 (0x00007fab8799b000)

/lib64/ld-linux-x86-64.so.2 (0x00007fab884af000)

(a) (5 pts) Given what you know about dynamically linked executables and the current
contents of the student’s mychroot directory, diagnose the problem. Then, fix the
problem, providing the contents of the staging directory (mychroot) in answer.txt

and your modified Dockerfile. For this question, the modified Dockerfile must still
use FROM scratch, and you may not recompile the bash executable.

17

ANSWER: The issue is that the libraries were missing from the container
chroot. Adding them back in allows bash to run in the from scratch
container:

$ find mychroot/

mychroot/

mychroot/bin

mychroot/bin/bash

mychroot/lib64

mychroot/lib64/libtinfo.so.6

mychroot/lib64/libdl.so.2

mychroot/lib64/libc.so.6

mychroot/lib64/ld-linux-x86-64.so.2

$ cat Dockerfile

FROM scratch

COPY mychroot/bin/bash /bin/bash

COPY mychroot/lib64/libtinfo.so.6 /lib64/libtinfo.so.6

COPY mychroot/lib64/libdl.so.2 /lib64/libdl.so.2

COPY mychroot/lib64/libc.so.6 /lib64/libc.so.6

COPY mychroot/lib64/ld-linux-x86-64.so.2 /lib64/ld-linux-x86-64.so.2

(b) (4 pts) After solving the above problem, the student quickly found that their “from
scratch” container was not very interesting. They could not even run ls, though pwd

and exit worked:

$ docker run --rm -it mycontainer "/bin/bash"

Emulate Docker CLI using podman. Create /etc/containers/nodocker to quiet msg.

bash-4.4# ls

bash: ls: command not found

bash-4.4# pwd

/

bash-4.4# exit

exit

Recalling what you know about shells from project 1, provide an explanation why ls

failed but pwd and exit succeeded.

ANSWER: Even after adding the libraries in the previous step, the stu-
dent did not add other executables, such as ls. pwd and exit, on the other
hand, are builtins in bash, so for these it was unnecessary to add new files
to the container.

18

(c) (4 pts) After some time, the student added some more tools to the “from scratch”
container. They remembered that they had to do something later and quickly jotted
down a note before exiting the container:

$ docker run --rm -it mycontainer "/bin/bash"

Emulate Docker CLI using podman. Create /etc/containers/nodocker to quiet msg.

bash-4.4# echo "remember to do the thing" > todo.txt

bash-4.4# ls -l todo.txt

-rw-r--r-- 1 0 0 25 May 5 23:10 todo.txt

bash-4.4# exit

Later, the student ran the container again to retrieve the note.

$ docker run --rm -it mycontainer "/bin/bash"

Emulate Docker CLI using podman. Create /etc/containers/nodocker to quiet msg.

bash-4.4# ls -l todo.txt

What output will the student see, and why did they receive that output?

ANSWER: The output will be:

ls: cannot access 'todo.txt': No such file or directory

What happened is that a new filesystem layer is created atop the base
image for each run of the container (and discarded afterwards) so the
todo file is now gone!

19

	Networking (30 pts)
	Know Your Internet (8 pts)
	Read It Online (6 pts)
	A ROT13 Server (16 pts)

	Virtual Memory (18 pts)
	A Case of Cache Busting (10 pts)
	MAP_POPULATE (8 pts)

	Automatic Memory Management (12 pts)
	Heap Overwrites (18 pts)
	Virtualization and Containers (9 pts)
	Container Woes (13 pts)

