
CS 3214 Spring 2022 Final Exam

May 6, 2022

Contents

1 Networking (30 pts) 3
1.1 Know Your Internet (8 pts) . 3
1.2 Read It Online (6 pts) . 3
1.3 A ROT13 Server (16 pts) . 4

2 Virtual Memory (18 pts) 6
2.1 A Case of Cache Busting (10 pts) . 6
2.2 MAP POPULATE (8 pts) . 7

3 Automatic Memory Management (12 pts) 8

4 Heap Overwrites (18 pts) 9

5 Virtualization and Containers (9 pts) 11

6 Container Woes (13 pts) 11

1

Rules

• This exam is open book, open notes, and open Internet, but in a read-only way.

• You are not allowed to post or otherwise communicate with anyone else about these
problems. This includes sites such as chegg.com, which will be monitored. The open
Internet stipulation does not apply to such sites.

• You are required to cite any sources you use, except for lecture material, source code
provided as part of the class material, and the textbook. Failure to do so is an Honor
Code violation.

• If you have a question about the exam, you may post it as a private question on
Discourse addressing the instructors (account names: @Godmar Back and @djwillia
and @Liting Hu). If your question is of interest to others, we will make it public as
a clarification or hint.

• During the test period, you may not use Discourse to post other questions or reply
to questions posted there.

• Any errata to this exam or hints given will be published prior to 12h before the
deadline, please check Discourse under tag final.

Submission Requirements

Submit a tar file that contains the following files:

• rot13.c for Question 1.3

• networking.txt with answers to Question 1.1

• virtualization.txt with answers to Question 5

• Dockerfile for Question 6 (1)

• answers.txt with the answers for all remaining questions

Note: Please be succinct and clear in all of the discussion answers; if (can be said

in fewer words) {use fewer words}.

Important: Make sure to visit the autograder website and check that your submission
is complete.

2

1 Networking (30 pts)

1.1 Know Your Internet (8 pts)

Find out if the following statements related to networking are true or false. If true, just
write true. If false, write false and provide the corrected statement.

(a) By separating the business logic of an application from its presentation logic, a multi-
tier architecture makes Internet applications much more flexible to changes.

(b) The dominant transport layer protocol today is called HTTP.

(c) When determining the destination socket for a received IP datagram that carries a
TCP segment, the receiving host must consider both the sender’s IP address and
port and the destination’s IP address and port.

(d) In TCP, the number of bytes that one party may send before receiving an acknowl-
edgement from the other side is fixed by design.

(e) Cryptographically signed tokens allow a server to validate a user’s identity even
when the user provided their authentication credentials to a different server (called
an identity provider.)

(f) The network layer uses the transport layer to ensure the reliable delivery of network
packets.

(g) If the transition from IPv4 to IPv6 goes according to plan, IPv4 traffic will eventually
fade out even before users disable IPv4 on their networks.

(h) The design of custom transport layer protocols such as QUIC requires changes to the
OS kernel because all network protocol processing takes place inside the kernel.

1.2 Read It Online (6 pts)

In a blog post1 designed to attract search engine traffic, an author writes the following
about the purported differences between HTTP and TCP:

The Main Differences Between HTTP and TCP

• HTTP typically uses port 80 – this is the port that the server “listens to”
or expects to receive from a Web client. TCP doesn’t require a port to do
its job.

• HTTP is faster in comparison to TCP as it operates at a higher speed and
performs the process immediately. TCP is relatively slower.

1HTTP vs TCP - What’s the difference?

3

https://www.goanywhere.com/blog/http-vs-tcp-whats-the-difference

• TCP tells the destination computer which application should receive data
and ensures the proper delivery of said data, whereas HTTP is used to
search and find the desired documents on the Internet.

• TCP contains information about what data has or has not been received
yet, while HTTP contains specific instructions on how to read and process
the data once it’s received.

• TCP manages the data stream, whereas HTTP describes what the data in
the stream contains.

• TCP operates as a three-way communication protocol, while HTTP is a
single-way protocol.

In these six bullet points, the author managed to bury several contortions, misrepresenta-
tions, or downright misinformation.

Select two of these erroneous or misrepresented statements. Briefly explain why they
do not make sense and provide a correct explanation.

1.3 A ROT13 Server (16 pts)

The ROT13 protocol is a new request/response protocol to retrieve files and send them
encrypted over the network using the ROT13 substitution cipher.

Details of the protocol are still under development, but you were able to secure an
strace log of a transaction performed by a prototype ROT13 server. You were also able
to learn how a ROT13 client works because you witnessed an invocation using the netcat
program (nc) and Unix pipes, which looked like this:2

$ echo 'ROT13 secret.txt' | nc hazelnut 20000

Tbbq yhpx jvgu gur svany!

Here, secret.txt is the name of the file to be retrieved in ROT13 encryption. This file
must exist in the directory in which the server ran.

The strace of the server, when run with

strace -v -s 1024 -o log ./rot13 20000

is shown below:

write(1, "calling getaddrinfo\n", 20) = 20

[... system calls made by getaddrinfo are elided...]

write(1, "getaddrinfo returned\n", 21) = 21

socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP) = 3

2Note that echo appends a single newline character here.

4

https://en.wikipedia.org/wiki/ROT13

setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0

bind(3, {sa_family=AF_INET6, sin6_port=htons(20000), sin6_flowinfo=htonl(0),

inet_pton(AF_INET6, "::", &sin6_addr), sin6_scope_id=0}, 28) = 0

listen(3, 500) = 0

accept(3, {sa_family=AF_INET6, sin6_port=htons(47698), sin6_flowinfo=htonl(0),

inet_pton(AF_INET6, "::ffff:192.168.5.104", &sin6_addr), sin6_scope_id=0},

[128 => 28]) = 4

setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0

write(2, "Accepted connection from ::ffff:192.168.5.104:47698\n", 52) = 52

read(4, "ROT13 secret.txt\n", 4097) = 17

openat(AT_FDCWD, "secret.txt", O_RDONLY) = 5

fstat(5, {st_dev=makedev(0, 0x42), st_ino=19682582745, st_mode=S_IFREG|0644,

st_nlink=1, st_uid=14913, st_gid=16151,

st_blksize=1048576, st_blocks=8, st_size=27, st_atime=1651687994

/* 2022-05-04T14:13:14.384810192-0400 */, st_atime_nsec=384810192,

st_mtime=1651687994 /* 2022-05-04T14:13:14.384810192-0400 */,

st_mtime_nsec=384810192, st_ctime=1651687994

/* 2022-05-04T14:13:14.384810192-0400 */, st_ctime_nsec=384810192}) = 0

mmap(NULL, 27, PROT_READ|PROT_WRITE, MAP_PRIVATE, 5, 0) = 0x7f9095f19000

write(4, "\nTbbq yhpx jvgu gur svany!\n", 27) = 27

close(4) = 0

close(3) = 0

exit_group(0) = ?

+++ exited with 0 +++

(this strace has irrelevant details elided, you can access the full strace on the class
website).

Reconstruct rot13.c so that it implements the ROT13 service.
Your implementation should be subject to the following conditions:

• When started, your server should accept a single command line argument which is a
string denoting the port number on which the server should listen. (In the example
above, the server was invoked with ./rot13 20000.)

• From clients, your server should accept ROT13 requests for any filename consisting
of alphanumerical characters (not including slashes).

• Your server should accept and handle a single client connection and then exit.

• Your server must use mmap() to access the file content, but it must not change the
file on disk. (Hint: investigate the difference between MAP SHARED and MAP PRIVATE

and use the correct flag.)

5

• To save time, you should use the following routine to perform the ROT13 encryption:

// In-place ROT13 cipher

static void

rot13(unsigned char *b, size_t n)

{

for (size_t i = 0; i < n; i++) {

switch (b[i]) {

case 'a'...'z':

b[i] += 13;

if (b[i] > 'z') b[i] -= 'z' - 'a' + 1;

break;

case 'A'...'Z':

b[i] += 13;

if (b[i] > 'Z') b[i] -= 'Z' - 'A' + 1;

break;

}

}

}

• You may use socket.c and socket.h. A copy will be provided on the class website,
which is a slightly modified version of the one used in project 4.

• For the purposes of this problem, you may assume a friendly (non-malicious) client,
so you do not need to check for protocol violations or IDOR attacks.

• Your server must handle short reads.

2 Virtual Memory (18 pts)

2.1 A Case of Cache Busting (10 pts)

The well-known performance engineer Brendan Gregg reports in a blog post from Aug 30,
20213 about a performance incident at Netflix.

Gregg reports:

A service team was debugging a performance issue and noticed it coincided
with a high rate of paging. (...)

3You can find the full blog post (which includes pictures and graphs) here: Analyzing a High Rate of
Paging

6

https://www.brendangregg.com/blog/2021-08-30/high-rate-of-paging.html
https://www.brendangregg.com/blog/2021-08-30/high-rate-of-paging.html

The microservice managed and processed large files, including encrypting them
and then storing them on S3. The problem was that large files, such as 100
Gbytes, seemed to take forever to upload. Hours. Smaller files, as large as 40
Gbytes, were relatively quick, only taking minutes.

A cloud-wide monitoring tool, Atlas, showed a high rate of paging for the larger
file uploads. (...) the iostat(1) tool showed a high rate of disk I/O during a
large file upload (...)

There [was] not much memory left, 349 Mbytes, but more interesting is the
amount in the buffer/page cache: 48,643 Mbytes (48 Gbytes). This is a 64-
Gbyte memory system, and 48 Gbytes is in the page cache (the file system
cache).

This shows many cache misses, with a hit ratio varying between 6.5 and 74%.
I usually like to see that in the upper 90’s. This is “cache busting.” The 100
Gbyte file doesn’t fit in the 48 Gbytes of page cache, so we have many page
cache misses that will cause disk I/O and relatively poor performance.

The quickest fix is to move to a larger-memory instance that does fit 100 Gbyte
files. The developers can also rework the code with the memory constraint
in mind to improve performance (e.g., processing parts of the file, instead of
making multiple passes over the entire file).

Answer the following questions:

(a) (3 pts) When the system experienced the “performance issue,” did it likely make full
use of its CPU(s)? Justify your answer.

(b) (5 pts) How did Gregg conclude that the workload in question must have “made
multiple passes over the entire file?” Relate your answer to the decisions that Linux’s
page replacement algorithm must have made.

(c) (2 pts) When Gregg talks about “moving to a 100GB” instance, is he referring to the
size of virtual memory or the size of physical memory?

2.2 MAP POPULATE (8 pts)

A CS3214 student was using mmap to read from a file residing on a filesystem on a magnetic
disk for processing in their program. The file is large, but not so large that it does not
fit in main memory. The student, having learned that man pages are very useful, began
reading about different flags to mmap, and found one called MAP POPULATE:

MAP_POPULATE (since Linux 2.5.46)

Populate (prefault) page tables for a mapping. For a file

7

mapping, this causes read-ahead on the file. This will

help to reduce blocking on page faults later. The mmap()

call doesn't fail if the mapping cannot be populated (for

example, due to limitations on the number of mapped huge

pages when using MAP_HUGETLB). MAP_POPULATE is supported

for private mappings only since Linux 2.6.23.

(a) (4 pts) Suppose the student’s program was a data processing program that mmaped
the large file and then accessed it sequentially. In theory, should the student specify
the MAP POPULATE flag to mmap? What effect (if any) would specifying MAP POPULATE

have on the performance of the program? Justify your answer.

(b) (4 pts) Suppose that instead, the student’s program only performed a handful of
small, random reads in the large file that was mmaped. In theory, should the stu-
dent specify the MAP POPULATE flag to mmap? What effect (if any) would specifying
MAP POPULATE have on the performance of the program? Justify your answer.

3 Automatic Memory Management (12 pts)

Consider the following memory allocation profile for a program in some language that uses
a form of automatic memory management:

Allocated Memory

Live Memory

t1 t2 time

m
em

or
y

(a) (6 pts) Write a program in a language of your choice that would produce this memory
allocation time profile. Assume that no garbage collection takes place.

8

(b) (3 pts) Now consider the point in time t1. If garbage collection took place at t1,
would it affect the allocation/time profile and if so, how?

(c) (3 pts) Now consider the point t2. If garbage collection took place at t2, would it
affect the allocation/time profile and if so, how?

4 Heap Overwrites (18 pts)

A programmer has written a secure embedded program to remotely control the door locks
on a secure facility. In the text section, the program contains numerous functions, including
one called print username which prints a user’s name to the screen:

void print_username(struct N *n) {

printf("%s", n->name);

}

Another interesting function in the code is called unlock door, which resides at the virtual
address of 0x80020300.

The program is using a simple explicit dynamic memory manager that uses implicit
lists with boundary tags and immediate coalescing to manage the heap. A first fit selection
policy is used. After running the program for some time, the concrete heap state is as
shown in Figure 1.

Figure 1: The heap. Each box is 64-bits in size. Boundary tags (in blue) are displayed in
“size/alloc” format, with 63 bits forming a size field and one bit specifying whether the
chunk is allocated (1) or free (0).

Unfortunately, an attacker has gained the ability to perform an out of bounds write for
the array contained in the orange object of type struct v on the heap. The vulnerable
line is here, where v is a pointer to this object:

9

v->data[i] = val;

where val is a 64 bit attacker controlled value and, due to poor input sanitization, the
attacker also has control of the index i.

Your task is to answer the following questions about different scenarios of out-of-bounds
writes on the heap:

(a) (3 pts) What will be the immediate result if the attacker causes the following to
execute:

v->data[512] = 0xdeadbeef;

(b) (3 pts) What will happen on the next call to malloc(8) if the attacker causes the
following to execute:

v->data[11] = {.size=1000, .alloc=1};

(c) (3 pts) What will happen on the next call to malloc(8) if the attacker causes the
following to execute:

v->data[14] = 0xdeadbeef;

(d) (3 pts) What will happen if the program immediately frees the yellow object F after
the attacker causes the following to execute:

v->data[20] = {.size=20; .alloc=0}

(e) (3 pts) What will happen the next time the program calls print username with a
pointer to the green object N if the attacker causes the following to execute:

v->data[25] = 0x2144454B434148;

Assume that the architecture uses the Little Endian format to store multibyte inte-
gers.

(f) (3 pts) What will happen the next time the function pointer in object F is called if
the attacker causes the following to execute:

v->data[22] = 0x80020300;

10

5 Virtualization and Containers (9 pts)

Find out if the following statements related to virtual machines and/or containers are true
or false.

If true, just write true. If false, write false and provide the corrected statement.

(a) Running virtual machines can migrate from one physical server to another without
disturbing normal operations or causing noticable downtime.

(b) Some virtual machine monitors translate a guest kernel’s binary machine code instead
of directly executing it in deprivileged mode.

(c) Container images are static bundles of files that describe the environment in which
a container instance will execute when it is started.

(d) Container designs typically use a virtualized instruction set architecture (ISA) that
is different from the ISA associated with the hardware of the machine running the
container engine.

(e) OS kernels often include accommodations that allows them to execute more efficiently
when running inside a virtual machine.

(f) Layers in container filesystems refer to the 7-layer design as specified in the Open
Systems Interconnection model.

(g) Before running your containerized application on another machine such as provided
by a commercial container service, you must ensure that the provider of the target
system has installed all of the necessary libraries that your application requires.

(h) Both virtual machines and containers are equally good tools for facilitating debugging
operating system kernels.

(i) On a per instance basis, containers tend to need fewer physical resources such as
memory when compared to virtual machines.

6 Container Woes (13 pts)

A CS3214 student learned about Linux containers and how they have their own private
chroot filesystem. So, the student decided to play around with containers from scratch,
by creating a new directory tree, containing the binary for a bash shell to poke around
inside the container with.

Here are the steps the student took. First, they copied bash from their local filesystem
into a directory that served as a staging area for what would become the container’s chroot
filesystem:

11

$ mkdir -p mychroot/bin

$ cp /bin/bash mychroot/bin/

The student then created the following Dockerfile in the working directory and built a
container named mycontainer using the Docker CLI. (Note: the docker build command
is taking a build context, which is where the Dockerfile and staging directory (mychroot)
reside. In this case it is specified as the current directory ’.’)

$ cat <<EOF > Dockerfile

FROM scratch

COPY mychroot/bin/bash /bin/bash

EOF

$ docker build -t mycontainer .

Emulate Docker CLI using podman. Create /etc/containers/nodocker to quiet msg.

STEP 1/2: FROM scratch

STEP 2/2: COPY mychroot/bin/bash /bin/bash

COMMIT mycontainer

--> bcc7380ddae

Successfully tagged localhost/mycontainer:latest

bcc7380ddae7ead1b539c4b2b36e5c38f4d2b4ee1f672d392b5cca9c7ca1ef3d

However, when running the container, the student encountered a bizarre error:

$ docker run --rm -it mycontainer "/bin/bash"

Emulate Docker CLI using podman. Create /etc/containers/nodocker to quiet msg.

standard_init_linux.go:228: exec user process caused: no such file or directory

The student double-checked the mychroot directory from which the container chroot
was built, and sure enough bash was there, as follows:

$ find mychroot/

mychroot/

mychroot/bin

mychroot/bin/bash

$ file mychroot/bin/bash

mychroot/bin/bash: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),

dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0,

BuildID[sha1]=0abac065ab1eb79dff27b1278df95da568034daa, stripped

$ ldd mychroot/bin/bash

linux-vdso.so.1 (0x00007ffee4772000)

12

libtinfo.so.6 => /lib64/libtinfo.so.6 (0x00007fab87f64000)

libdl.so.2 => /lib64/libdl.so.2 (0x00007fab87d60000)

libc.so.6 => /lib64/libc.so.6 (0x00007fab8799b000)

/lib64/ld-linux-x86-64.so.2 (0x00007fab884af000)

(a) (5 pts) Given what you know about dynamically linked executables and the current
contents of the student’s mychroot directory, diagnose the problem. Then, fix the
problem, providing the contents of the staging directory (mychroot) in answer.txt

and your modified Dockerfile. For this question, the modified Dockerfile must still
use FROM scratch, and you may not recompile the bash executable.

(b) (4 pts) After solving the above problem, the student quickly found that their “from
scratch” container was not very interesting. They could not even run ls, though pwd

and exit worked:

$ docker run --rm -it mycontainer "/bin/bash"

Emulate Docker CLI using podman. Create /etc/containers/nodocker to quiet msg.

bash-4.4# ls

bash: ls: command not found

bash-4.4# pwd

/

bash-4.4# exit

exit

Recalling what you know about shells from project 1, provide an explanation why ls

failed but pwd and exit succeeded.

(c) (4 pts) After some time, the student added some more tools to the “from scratch”
container. They remembered that they had to do something later and quickly jotted
down a note before exiting the container:

$ docker run --rm -it mycontainer "/bin/bash"

Emulate Docker CLI using podman. Create /etc/containers/nodocker to quiet msg.

bash-4.4# echo "remember to do the thing" > todo.txt

bash-4.4# ls -l todo.txt

-rw-r--r-- 1 0 0 25 May 5 23:10 todo.txt

bash-4.4# exit

Later, the student ran the container again to retrieve the note.

$ docker run --rm -it mycontainer "/bin/bash"

Emulate Docker CLI using podman. Create /etc/containers/nodocker to quiet msg.

bash-4.4# ls -l todo.txt

What output will the student see, and why did they receive that output?

13

	Networking (30 pts)
	Know Your Internet (8 pts)
	Read It Online (6 pts)
	A ROT13 Server (16 pts)

	Virtual Memory (18 pts)
	A Case of Cache Busting (10 pts)
	MAP_POPULATE (8 pts)

	Automatic Memory Management (12 pts)
	Heap Overwrites (18 pts)
	Virtualization and Containers (9 pts)
	Container Woes (13 pts)

