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CS 3214 Sample Midterm 
 
Solutions are shown in this style. This exam was given Spring 2016. 

1. Abstraction and Protection (12 pts) 
a) (6 pts) An operating system is a software layer that provides abstractions 

for specific hardware components as well as interfaces that allow user 
programs to access these abstractions.  
 
Give one example of such an abstraction, the hardware component(s) it 
represents, and the interface provided to it! 
 

The abstraction called ______________________________ 

represents the concrete hardware component(s) _______________ 
____________________________________________ 

and it is accessed via the interface called ___________________ 

____________________________________________. 
 

There are many possible answers, examples are shown in the table below: 
 

Abstraction Hardware Interface 

Process/Thread CPU Instruction Set, 
Process/Thread 
Management API 

Virtual Memory Memory Virtual addresses, 
Memory Management 
API 

Files Storage Devices 
(disk, etc.) 

File descriptor API 

Standard I/O I/O Terminals File descriptor API 

Sockets Network Interface 
Card 

File descriptor + 
socket API 

(Alarm) Signal Timer Chip signal(2), SIGALRM 

 
b) (6 pts) We know that in systems exploiting dual-mode operation, the 

operating system will receive a trap if a user program attempts to execute 
a privileged instruction, as for example a C program that  contains a 
asm(“hlt”) inline asm statement.  
 
To avoid the overheads associated with dual mode operation, such as the 
cost of mode transitions, evaluate the following two proposed alternative 
designs and state whether they would provide the same level of 
protection! Justify your answer! 
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i. Outlaw “asm” statements so that the programmer cannot insert 

assembly code that invokes privileged instructions into their 
programs. 
 

This would not yield the same level of protection since programmers could side-
step the compiler by directly writing assembly code; code generated by just-in-
time compilers that directly emit native code would also not be covered. 

 
ii. Perform a check during the linking and loading process in which the 

executable is scanned for privileged instructions. 
 
This would provide the same level of protection only if all user code must be 
loaded by the OS; again, a possible loop hole here would be just-in-time 
compilation. Closing this loop hole would require outlawing any kind of self-
modifying code or just-in-time compilation, for instance, don’t allow segments that 
are both writable and executable, or changing segments from writable to 
executable. 
A second problem arises with variable-length instruction sets, such as x86, 
where the analysis would need to verify all possible branch targets as well. 
Researchers have in fact proposed and built systems that execute in a single 
mode and restrict user programs to be written in verifiable, type-safe languages. 

2. Processes (18 pts) 
a) (14 pts) Assume the following timeline that maps three processes P1, P2, 

and P3 to their states (READY, RUNNING, BLOCKED). At certain points, 
processes change the state they are in. In the table below, list one 
possible reason for why a process may have switched state! Make sure 
you do not just say: “P1 transitioned from BLOCKED to READY” or 
“context switch” – but rather give a reason for why a particular state 
transition may have happened! As you consider possible reasons, note 
the constraints given by (#), (##), and (*)! 
 

# P1 P2 P3 Possible reason 

 BLOCKED BLOCKED BLOCKED Initially, the system is idle 

1 READY BLOCKED BLOCKED 
A timer interrupt wakes up P1 
(say from nanosleep()) 

2 RUNNING BLOCKED BLOCKED The scheduler picks P1 to run 

3 RUNNING READY BLOCKED 
(#) P2 wakes up from network 
I/O when a packet arrives 

4 RUNNING RUNNING BLOCKED 
The scheduler picks P2 to run 
(on a second CPU) 

5 RUNNING RUNNING READY 

(##) P3 wakes up because of a 
communication-related event, 
say a semaphore signal. 
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6 RUNNING READY READY 

P2 is preempted because its 
time slice has expired (or it calls 
sched_yield()) 

7 RUNNING READY RUNNING The scheduler picks P3 to run 

8 BLOCKED READY RUNNING 
P1 starts a read() from a file on 
disk 

9 BLOCKED RUNNING RUNNING 
The scheduler picks P2 to run 
(on the CPU on which P1 ran) 

10 BLOCKED RUNNING BLOCKED 
(*) P3 blocks say on a lock or 
semaphore 

11 READY RUNNING BLOCKED 
P1’s read() from disk, started in 
#8, completes. 

 
(#)  provide a different reason here than in row #1. 
(##)  provide a different reason here than in rows #1 and #3. 
(*)  provide a different reason here than in row #8. 
 

Note that the event in #11 must match the reason for why P1 blocked in #8. 
#1, #3, and #5 of course could have different answers as long as three examples 
are given for why a process may transition into the READY state. Ditto for #8 and 
#10. 

 
b) (4 pts) Assuming a work-conserving scheduler (which does not 

unnecessarily let CPUs idle), how many CPUs does the system on which 
this trace occurred have? 
 

It has 2 CPUs since there were 2 processes in the RUNNING state in #4 and #5. 
 

3. Linking (18 pts) 
a) (10 pts) Consider the following code: 

 
// link.h 
#include <stdio.h> 
 
static int s; 
int c; 
extern int i; 
int * g(void); 
 
static void incs(void) {  
    s++;  
} 

// link2.c 
#include "link.h" 
 
void f() { 
    s = c + 3; 
    c = c + 2; 
    i = 2 * s; 
} 
 
int 
main() 
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// link1.c 
#include "link.h" 
 
int i = 2; 
 
int * g(void) { 
    i = (c * 7) * s; 
    incs(); 
    return &s; 
} 

{ 
    f(); 
    if (g() == &s) { 
        incs(); 
    } else { 
        c = c + 2; 
        i = 2 * s; 
    } 
    printf("s = %d c = %d i = %d\n", 
            s, c, i); 
    return 0; 
} 

 
i. (6 pts) The program is built with gcc –Wall link1.c link2.c –o 

link. What does it output when run with ./link? 

 
s = 3 c = 4 i = 6 
 

ii. (4 pts) Which recommended “best practice” does this program 
violate? 

 
It defines variables in header files (i.e., s and c) 

 
b) (4 pts) The standard linker builds executables out of separately compiled 

.o object modules. Modern systems also support dynamically loaded 
libraries (i.e., that are loaded at runtime). Yet, this setup lacks many of the 
features provided by the existing module systems in higher-level 
languages. Consider one such high-level language with which you are 
familiar and name one feature of its module system that is not provided by 
the standard linker! 
 

Examples include 

• Hierarchical namespaces (e.g. java.util.*) rather than a global namespace 

• Multiple visibility levels (e.g. public, protected, private, package-level 
visibility) rather than just 2 (local + global) 

• Non-leaky dependencies (specific “import” or “import from” statements to 
specify from where references should be imported or resolved) 

 
And possibly others. 
 
Non-examples include: 

• Encapsulation (we have some degree of that using local symbols) 

• Ability to load modules at run-time (we can do some of that using 
dlopen()/dlsym()) 
 

c) (4 pts) Wikipedia1 defines Position-Independent Code as: 

                                            
1 https://en.wikipedia.org/wiki/Position-independent_code 
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In computing, position-independent code (PIC) or position-independent 
executable (PIE) is a body of machine code that, being placed somewhere in 
the primary memory, executes properly regardless of its absolute address. 
 

Building shared libraries as PIC allows them to be loaded at different 
addresses in different processes.  
Name one reason for why building shared libraries as PIC is needed or 
useful! 
 

It is needed because the same address may not be available in different 
processes, for instance, if different dynamic libraries are already loaded, or 
addresses are used for heap space, stacks, or mmap’d regions.  Even if the 
same address were available, it is useful to load libraries at different addresses 
to provide ASLR (address space layout randomization). Without position-
independent code, libraries would have to be relocated at load-time, which is 
expensive and would prevent those libraries from being shared, thus increasing 
memory use. 

 
 

4. System Calls (18 pts) 
a) (10 pts) The system() function is defined in the C99 standard. Below are 

relevant excerpts from its man page: 
 
SYSTEM(3)                  Linux Programmer's Manual           SYSTEM(3) 
 
NAME 
       system - execute a shell command 
 
SYNOPSIS 
       #include <stdlib.h> 
 
       int system(const char *command); 
 
DESCRIPTION 
       system()  executes a command specified in command by calling  
       /bin/sh -c command, and returns after the command has 
       been completed.   
 
RETURN VALUE 
       The value returned is -1 on error, and the return status of the 
       command otherwise.  This latter return status is in the  
       format specified in wait(2).  
 
       system() does not affect the wait status of any other children. 

 
Interestingly, system() is not a system call in Unix.  
Implement it according to the (partial) specification presented here using 
system calls you have used in project 1! 
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int system(const char *command) 
{ 
    pid_t child = fork(); 
    if (child == 0) { 
        execlp("/bin/sh", "/bin/sh", "-c", command, NULL); 
    } else { 
        int status; 
        waitpid(child, &status, 0); 
        return WEXITSTATUS(status); 
    } 
} 
 

Instead of execlp, you could also use other variants of the exec*() family, such as 
execv: 

 
int system(const char *command) 
{ 
    pid_t child = fork(); 
    if (child == 0) { 
        const char *av[] = { "/bin/sh", "-c", command, NULL }; 
        execv(av[0], (char * const *) av); 
    } else { 
        int status; 
        waitpid(child, &status, 0); 
        return WEXITSTATUS(status); 
    } 
} 
 

We assume that /bin/sh exists so that the exec*() will not fail. To meet the 
requirement that the wait status of other children is not affected, it is necessary to 
use waitpid() (or wait4()). 

 

b) (4 pts) During exercise 3 (“Outfoxed”) a student attempted to debug a 
deadlock in his code by attaching gdb to the process running his code. 
Inadvertently, he attached to the driver script (checkoutfoxed.py) instead 
and posted this backtrace on the Piazza forum: 
 

(gdb) backtrace  
#0 0x00007f633c2cfa40 in __read_nocancel () from /lib64/libc.so.6  
#1 0x00007f633c25e739 in __GI__IO_file_xsgetn () from /lib64/libc.so.6  
#2 0x00007f633c253e5f in fread () from /lib64/libc.so.6  
#3 0x00007f633cf36dbc in file_read () from /lib64/libpython2.7.so.1.0  
#4 0x00007f633cfaf5d2 in PyEval_EvalFrameEx () from /lib64/libpython2.7.so.1.0  
#5 0x00007f633cfb00bd in PyEval_EvalCodeEx () from /lib64/libpython2.7.so.1.0  
#6 0x00007f633cfae76f in PyEval_EvalFrameEx () from /lib64/libpython2.7.so.1.0  
#7 0x00007f633cfb00bd in PyEval_EvalCodeEx () from /lib64/libpython2.7.so.1.0  
#8 0x00007f633cfae76f in PyEval_EvalFrameEx () from /lib64/libpython2.7.so.1.0  
#9 0x00007f633cfae860 in PyEval_EvalFrameEx () from /lib64/libpython2.7.so.1.0  
#10 0x00007f633cfb00bd in PyEval_EvalCodeEx () from /lib64/libpython2.7.so.1.0  
#11 0x00007f633cfb01c2 in PyEval_EvalCode () from /lib64/libpython2.7.so.1.0  
#12 0x00007f633cfc95ff in run_mod () from /lib64/libpython2.7.so.1.0  
#13 0x00007f633cfca7be in PyRun_FileExFlags () from /lib64/libpython2.7.so.1.0  
#14 0x00007f633cfcba49 in PyRun_SimpleFileExFlags () from /lib64/libpython2.7.so.1.0  
#15 0x00007f633cfdcb9f in Py_Main () from /lib64/libpython2.7.so.1.0  
#16 0x00007f633c209b15 in __libc_start_main () from /lib64/libc.so.6 #17 0x0000000000400721 in _start () 
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Why was the driver script blocked in fread() when the student’s program 
deadlocked and which file was it trying to read from? 
 

To grade the exercise, the driver program reads the outfoxed program’s output 
via a pipe it sets up for this purpose; when the program deadlocked, the driver 
was waiting to read its output via the file descriptor representing the pipe’s read 
end.  
Being able to write driver programs like that is one example that demonstrates 
the universality of the system calls (fork, exec, pipe, read, write, etc.) you gained 
familiarity with in your shell project. Many languages provide an API for these 
system calls, in Python, for instance, it’s subprocess.Popen which the driver 
uses. 
 

c) (4 pts) At the ACM Intercollegiate Programming Contest (ICPC), speed 
matters – both in writing programs quickly and in writing fast programs that 
meet the allotted time limit. Sometimes, programs must output large 
amounts of data which they have computed.  
A common optimization competitors perform is to replace code such as: 
 

        for (int i = 0; i < 100000; i++) 
            System.out.printf("%d %d\n", a[i], b[i]); 

 
With this code: 

 
        StringBuilder out = new StringBuilder(); 
        for (int i = 0; i < 100000; i++) 
            out.append(String.format("%d %d\n", a[i], b[i])); 
        System.out.print(out.toString()); 
 

Why does the second version of this code run much faster (Note that 
System.out.printf() internally calls String.format())? 
 

Since both versions do essentially the same output formatting, the performance 
difference must stem from the frequency of write(2) system calls. The second 
version does one write(2) system call, the first version does many.  

 
Interesting factoid: Java’s System.out flushes its buffer every time a newline \n is 
output, performing a write(2) system call, thus 100,000 calls are made in this 
example. Unlike for C’s stdio, this holds true even if the standard output file 
descriptor is not connected to a terminal, i.e., if it is redirected to a file. Why 
Java’s designers made this decision, we don’t know. Perhaps to avoid confusion 
such as this one. However, the same is not true for a PrintWriter() instance. 
 

5. Locks (12 pts) 
a) (12 pts) We know that in multithreaded processes, file descriptors are 

shared between all threads in a process. If multiple threads 

https://docs.python.org/2/library/subprocess.html
https://piazza.com/class/ijlhtsu6qas67f?cid=61
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simultaneously call read() on a file descriptor, only one thread will be 
successful in reading any available data up to the buffer size provided, the 
others will remain blocked until more data is available to be read. Based 
on this knowledge, implement an intraprocess mutual exclusion device 
(i.e., a lock) using Unix pipes! (Reminder: the read end of a pipe is at 
index [0], the write end at index [1].) 

 
/* Define a pipe-based lock */ 
struct pipelock { 
    int fd[2];     
}; 
 
/* Initialize lock */ 
void lock_init(struct pipelock *lock) 
{ 
    pipe(lock->fd); 
    write(lock->fd[1], "a", 1); 
} 
 
/* Acquire lock */ 
void lock_acquire(struct pipelock *lock) 
{ 
    char c; 
    read(lock->fd[0], &c, 1); 
} 
 
/* Release lock */ 
void lock_release(struct pipelock * lock) 
{ 
    write(lock->fd[1], "a", 1); 
} 

 
The crucial hint was given in the question: if multiple threads attempt to read, 
only one thread will read data, the others will block. That’s exactly the semantics 
you need for a lock: if multiple threads try to acquire it, only one thread will 
succeed, and the others will remain blocked. Pipe locks are widely used for their 
portability and fairness. 
 

6. Condition Variables and Semaphores (22 pts) 
a) (10 pts) In the lecture slides, we discussed the motivation for higher-level 

signaling facilities using a simple example of a coin toss: one thread was 
“tossing a coin” and the other thread must be informed of the outcome of 
this coin toss quickly, reliably, and efficiently. 
A long time ago, Dr. Back tried to write a version of this program using 
condition variables.  The program is still in the class website’s examples 
directory. It is reproduced below: 

 
/* 
 * Synchronization via condition variables. 
 * 
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 * This program contains a bug.  Find it and fix it. 
 */ 
#include <pthread.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <stdbool.h> 
 
int coin_flip;          // 0 or 1, heads or tails 
bool coin_flip_done;    // states whether 'coin_flip' contains valid result 
// lock below protects coin_flip_done; 
pthread_mutex_t coin_flip_done_lock = PTHREAD_MUTEX_INITIALIZER;  
pthread_cond_t coin_flip_done_cond = PTHREAD_COND_INITIALIZER; 
 
static void * 
producer(void *_items_to_produce) 
{ 
    int i, n = *(int *)_items_to_produce; 
    for (i = 0; i < n; i++) { 
        pthread_mutex_lock(&coin_flip_done_lock); 
        while (coin_flip_done) 
            pthread_cond_wait(&coin_flip_done_cond, &coin_flip_done_lock); 
 
        coin_flip = rand() % 2; 
        coin_flip_done = true; 
        printf("thread %p: flipping coin %d\n",  
            (void *)pthread_self(), coin_flip); 
        pthread_cond_signal(&coin_flip_done_cond); 
        pthread_mutex_unlock(&coin_flip_done_lock); 
    } 
    return NULL; 
} 
 
static void * 
consumer(void *_items_to_consume) 
{ 
    int i, n = *(int *)_items_to_consume; 
    for (i = 0; i < n; i++) { 
        pthread_mutex_lock(&coin_flip_done_lock); 
        while (!coin_flip_done) 
            pthread_cond_wait(&coin_flip_done_cond, &coin_flip_done_lock); 
 
        coin_flip_done = false; 
        printf("thread %p: coin flip outcome was %d\n",  
            (void *)pthread_self(), coin_flip); 
        pthread_cond_signal(&coin_flip_done_cond); 
        pthread_mutex_unlock(&coin_flip_done_lock); 
    } 
    return NULL; 
} 
 
int 
main() 
{ 
    int i; 
    #define N  4 
    pthread_t t[N]; 
    int items [N] =             { 3,        2,        4,        1 }; 
    void * (*func [N])(void*) = { consumer, consumer, producer, producer }; 
    srand(getpid()); 
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    for (i = 0; i < N; i++) 
        pthread_create(&t[i], NULL, func[i], items + i); 
 
    for (i = 0; i < N; i++) 
        pthread_join(t[i], NULL); 
    return 0; 
} 

 
Dr. Back now wishes he had commented his program because he doesn’t 
remember what bug this program contained! His intent was for 2 consumer 
threads to produce (3+2=5) coin tosses and for 2 producer threads to consume 
the same number (4+1=5). Producer threads should toss coins only when 
coin_flip_done is false and consumer threads consume them only when 
coin_flip_done is true.  
Analyze the example program and find the bug!  
Specifically, describe 
 

i. (2 pts) How the program might fail (what behavior you would observe if 
it did) 
 

The program will deadlock/hang/get stuck/not finish. 
 

ii. (4 pts) The root cause of the failure 
 

A single condition variable is used. As such, when a consumer signals that it is 
time to flip another coin, the call to pthread_cond_signal() may wake up the other 
consumer thread instead of a producer. As a result, the woken up consumer will 
find that no coin has been tossed and will go back to pthread_cond_wait(), never 
waking up any producer. Remember that pthread_cond_signal() will only wake 
up one thread. The same scenario can also happen when a producer’s signal will 
wake up the other producer instead of a consumer. 
 

iii. (4 pts) A possible approach to fixing it. 
 
You should fix it by using 2 separate condition variables – one that producers 
signal and consumer wait on, and the other for consumer to signal and producers 
to wait on. See rw lock example in lecture slides for a similar approach. 
 

b)  (4 pts) Edsger Dijkstra, the inventor of semaphores, reflected on their use 
in the ‘THE’ – Multiprogramming system in a 1968 paper as follows: 
 

During system conception it transpired that we used the semaphores in two 
completely different ways. The difference is so marked that, looking back, one 
wonders whether it was really fair to present the two ways as uses of the very 
same primitives.   
 
 Which two separate uses is Dijkstra talking about? 

 



CS 3214  Sample Midterm (Spring 2016) 
 

11/12 

He is talking about the uses of semaphores for mutual exclusion (initialized with 
1) and signaling/scheduling (initialized with 0).  
 
In fact, the quote continues: “On the one hand, we have the semaphore used for 
mutual exclusion, on the other hand, the private semaphores.” 
(They were called “private” because only a single process will ever call P() on 
them, i.e., wait on them.) See [Dijkstra 1971, pg. 346] 
 

c) The concept of a monitor, from which condition variables arose, was 
invented later in the 1970s. The 2012 book Operating Systems: Principles 
and Practice by Anderson and Dahlin quotes Dijkstra’s reflection on 
semaphores and relates them to condition variables in the following 
paragraphs: 

 
Semaphores considered harmful. Our view is that programming with locks 
and condition variables is superior to programming with semaphores, and we 
advise you to always write your code using those synchronization variables 
for two reasons.  
 
First, using separate lock and condition variable classes makes code more 
self-documenting and easier to read. As the quote from Dijkstra above notes, 
there really are two abstractions here, and code is clearer when the role of 
each synchronization variable is made clear through explicit typing.  
 
Second, a stateless condition variable bound to a lock turns out to be a better 
abstraction for generalized waiting than a semaphore. By binding a condition 
variable to a lock, we can conveniently wait on any arbitrary predicate on an 
object’s state. In contrast, semaphores rely on carefully mapping the object’s 
state to the semaphore’s value so that a decision to wait or proceed in P() can 
be made entirely based on the value, without holding a lock or examining the 
rest of the shared object’s state. 
 

Answer the following 2 questions: 
 

i. (4 pts) Illustrate the phrase “carefully mapping the object’s state to the 
semaphore’s value” with an example of an object whose state can be 
mapped to a semaphore’s value! 

 
If the semaphore represents some countable resource, say the number of slots 
available in a bounded buffer, it can be mapped directly. Calling post() 
increments the number of available slots by one, calling wait() decrements it. 
Another example is using 0/1 for “not signaled”/”signaled”. 

 
ii.  (4 pts) Provide a reasonable counter argument to Anderson’s view (i.e., a 

justification for preferring semaphores in certain scenarios, despite the 

http://pages.cs.wisc.edu/~remzi/cs736.html/Papers/theTHE.pdf
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undisputed fact that all such uses could, indeed, be replaced with 
condition variables)!  

 
 In my view, certain uses of semaphores for simple signaling tasks are perfectly 
safe and idiomatic. An example would be the simple rendezvous pattern (where 
thread A signals to thread B that it has reached some point and that B can 
access results A has computed and will not access again), and thus in which no 
state needs to be protected using locks or other semaphores. The resulting code 
is probably more concise, readable, and as robust as if it had been written using 
condition variables and locks. 
Another use is the use of counting semaphore to regulate concurrency (the 
number of threads entering a certain section of code).  
 
It would be much harder to defend the use of semaphores when it comes to 
using them for mutual exclusion (where locks are preferred), as well as for tasks 
that involve multiple accesses to shared state (where you would need to use one 
semaphore for mutual exclusion and another for signaling). Dahlin and Anderson, 
I suspect, were probably having these more complex uses in mind. 
 
Weaker arguments included that condition variables are harder to use due to 
having to deal with spurious wakeups and having to combine them correctly with 
locks. We should assume that the programmer choosing from these alternatives 
masters each correctly. 
 
The question asked you to take a position in pursuit of a particular line of argument, so I tried to 
grade your answer based on how reasonable I thought your position to be. 
 
A number of you pointed out that semaphore remember signals whereas condition variables do 
not. This is true, and this is why condition variables need to be tied to predicates that are evaluated 
under the protection of a lock. I don’t see this as an argument against Anderson’s view. 
 
Lastly, a number of you claimed performance or lower overhead benefit for semaphores. This is 
not true, as practically the same operations are performed in both scenarios – in the common case 
(uncontended) an atomic instruction to either change the semaphore’s value or acquire the lock, 
followed by a test. The dominant cost is that of the atomic instruction. The un-signaled case is also 
similar in both cases: a Boolean check, following by some way to block the calling thread. 
 


