
CS 3214 Sample Final Exam (Spring 2016)

1/11

Sample Final Exam

Solutions are shown in this style.

1. Are you Unix literate? (16 pts)
10 years ago, the CS department offered CS 2204, Introduction to Unix, which
focused on using Unix for simple processing and system programming tasks.
When revamping our curriculum into its current form in 2009, we decided to
remove that course in favor of our current sequence of courses, which delve
much deeper into these topics. But does training to be a car mechanic really
makes you a proficient driver along the way? In this question, you have a
chance to show us your skills by answering the following hypothetical situations:

a) If someone said: “Run ls minus l and grep for ‘abc’ and save the result in a file

‘output’” then you would type:

ls –l | grep abc > output

b) If someone said: “Put ~cs3214/bin in your path” then you would type:

export PATH=~cs3214/bin:$PATH

A common mistake was to replace the PATH – this means you won’t be able to run command such
as ls.

c) If someone said: “my read() call on this file descriptor returns -1 and I don’t

know why” then you would advise them to:

… check errno (or use perror())

d) If someone said: “calling read() on this socket returns 0 bytes read” then you

explain that as:

… the connection having been closed by the other party.

Note you can do better than stating “EOF” since the question mentioned a
socket.

e) If someone asked you to “check which rlogin machine you’re on” then you

would type:

hostname
(we also accepted: “look at the shell prompt” if you have a
suitably set up prompt)

CS 3214 Sample Final Exam (Spring 2016)

2/11

f) If someone asked you to “kill your ‘outfoxed’ process on hornbeam” then you
would:

ssh hornbeam killall outfoxed

(or ssh hornbeam; ps ax | grep outfoxed; kill <pid>)

g) If someone claimed that “they don’t have gdb on their EC2 instance” you

would advise them to:

… install it.

h) If someone suggested to “test their server by connecting with nc to

275.3.60.28 port 8080” you would reply:

.. that 275.3.60.28 is not a valid IP address.

2. Automatic Memory Management (14 pts)
a) (6 pts) Explicit memory management using malloc() and free() is known to

be error prone. Consider the following alternative design:

#include <stdlib.h>

struct block {
 int cnt;
 char data[0];
};

void *smalloc(size_t sz)
{
 struct block * b
 = malloc(sz + sizeof(int));
 b->cnt = 1;
 return b->data;
}

static void dec(void *p) {
 struct block * bp = p - sizeof(int);
 if (--bp->cnt == 0)
 free(bp);
}

static void inc(void *q) {
 struct block * bq = q - sizeof(int);
 bq->cnt++;
}

#define ASSIGN(p, q) do { \
 if (p != q) { \
 if (p) \
 dec(p); \
 inc(q); \
 p = q; \
 } \
} while(0)

#define CLEAR(p) do { \
 dec(p); \
} while(0)

// Sample use
int
main()
{
 int *p = smalloc(4 * sizeof(int));
 void *q = smalloc(2 * sizeof(int));
 ASSIGN(q, p); // q = p
 CLEAR(q); // q goes out of scope
 CLEAR(p); // p goes out of scope
}

CS 3214 Sample Final Exam (Spring 2016)

3/11

In this design, programmers call smalloc() instead of malloc(). Furthermore,

they never call free(). However, they have to replace all pointer assignments

(e.g. p = q with the ASSIGN(p, q) macro. In addition, whenever a pointer goes

out of scope, they have use the CLEAR() macro. Assume that a programmer

applies these rules consistently throughout their code and assume that no client-
side pointer arithmetic is being used.

i. (3 pts) Does this design guarantee the absence of “use-after-free” errors?
Justify your answer!

Yes it would. The code given performs reference counting, a form of automatic
memory management.

ii. (3 pts) Does this design guarantee that all memory which a program is

unable to access will eventually be freed? Justify your answer!

It does not – if there is a cycle in the object graph, those objects’ reference
counts will never reach zero.

b) (2 pts) The java.util.ArrayList JDK class provides an implementation of

an array-backed linear list. Shown below are relevant excerpts of its
remove() method:

 /**
 * Removes the element at the specified position in this list.
 * Shifts any subsequent elements to the left (subtracts one from their
 * indices).
 *
 * @param index the index of the element to be removed
 * @return the element that was removed from the list
 * @throws IndexOutOfBoundsException
 */
 public E remove(int index) {
 // rangeCheck and concurrent modification check elided
 E oldValue = elementData(index);

 int numMoved = size - index - 1;
 if (numMoved > 0)
 System.arraycopy(elementData, index+1, elementData, index,
 numMoved);
 elementData[--size] = null; // X

 return oldValue;
 }

Here, size refers to the number of elements in the list (which may be less than

the size of the elementData array backing it.)

Explain the significance of the statement in bold (marked with an X)! What would
happen if it were absent?

CS 3214 Sample Final Exam (Spring 2016)

4/11

It removes a reference from the list to its last object, which if not done could
cause a memory leak once no other references to this object exist. It is not
acceptable for an object to be unreclaimable just because it was at some point in
an ArrayList.

c) (6 pts) Suppose you are hired as a Java engineer for a company that

provides web services. Every so often, one of their servers runs out of
memory. The operations engineer has started to run the JVM with the -XX:-
HeapDumpOnOutOfMemoryError flag, which causes the JVM to write a heap

snapshot when it runs out of memory. You are given the heap dump from the
last time it crashed. Describe the process you would use to investigate and
determine the root cause of the crash! In your discussion, address at least 2
reasons for why a Java program may run out of memory!

Although debugging memory-related failures can be difficult to debug in general,
a first approach to post-mortem analysis should be to examine the heap dump
with an analysis tool such as the Eclipse memory analyzer and identify which
objects have the largest retained heap size. Then, try to identify whether their
memory consumption is due to a) a leak (memory kept alive that isn’t accessed
in the future), or b) a large live heap size (objects that are kept alive because the
program may access them in the future, such as a cache), or c) runtime bloat
(objects taking unexpectedly a lot more memory than is expected from their
function.

3. Virtual Memory (12 pts)
a) (6 pts) The mmap() system call can be used to map a file so that a program

can use pointer operations to access its content.

i. (3 pts) On a 32-bit Linux machine with 16 GB of RAM and a 1TB disk,
can you mmap() a 6 GB file? Justify your answer!

No you can’t. On a 32-bit Linux machine, the user address space is less than
4GB, but mmap() requires the availability of a contiguous chunk of virtual
address space.

ii. (3 pts) Could you mmap() the same file on a 64-bit Linux machine with
only 4 GB of RAM? Justify your answer!

Yes you can. There is enough virtual address space. The availability of RAM is
not checked when deciding whether to allow a process to mmap().

b) (6 pts) You are writing a program that processes “big data” in memory. After

all data has been read into memory, you observe that the program appears to
make much slower progress than you had expected, although you do not

CS 3214 Sample Final Exam (Spring 2016)

5/11

receive any out of memory errors. You are running on a multiprocessor with 4
cores, but the system usage meter shows that CPU consumption is near
zero. A friend suggests to increase the swap space size to better
accommodate the program’s virtual memory requirements.
Will this approach help with the phenomenon you observe or not? Justify your
answer!

The phenomenon described (large memory consumption, low CPU utilization,
slow progress) is typical of thrashing – a state where processes spend most of
their time paging data in and out from/to disk. The root cause is a shortage of
physical memory. Therefore, adding swap space will not solve the problem. In
fact, if a shortage of swap space had been an issue, the program would have
seen out of memory errors (malloc() failing, or in Linux the OOM killer killing the
program.)

4. Explicit Memory Management (13 pts)
a) (4 pts) Optimizing Boundary Tags. In the technique for dynamic memory

allocators discussed in lecture, 2 identical boundary tags are placed in the
header and footer of each block. These boundary tags contain the size of the
block as well as 1 bit describing whether it is allocated or free. Your project
partner proposes the following idea: include a 2nd bit in the boundary tag
header that denotes if the previous block (i.e., the one immediately located to
the “left”) is allocated. Then, omit the boundary tag footer for allocated blocks,
which will decrease internal fragmentation and increase the utilization score.

Discuss the merits of this idea! Will it work or not? Justify your answer!

It will work since the size field in a boundary tag footer is not examined unless
the block to which the footer belongs is free. In fact, it is a technique commonly
exploited. Note that the boundary tag footer is retained for free blocks.

b) (9 pts) Region-based management. Some programming languages support a

memory management paradigm that is based on regions. Each allocated
object belongs to one region. A program may create as many regions as it
wishes. All objects that belong to a region are freed when a region is
destroyed. Consider the following example, taken from WikiPedia:1

Region *r = createRegion();

ListNode *head = NULL;

for (int i = 1; i <= 1000; i++) {

 ListNode* newNode = allocateFromRegion(r, sizeof(ListNode));

 newNode->next = head;

1 https://en.wikipedia.org/wiki/Region-based_memory_management

CS 3214 Sample Final Exam (Spring 2016)

6/11

 head = newNode;

}

// ...

// (use list here)

// ...

destroyRegion(r);

Describe how would efficiently implement createRegion(),

allocateFromRegion(), and destroyRegion()!

i. createRegion() [discuss any data structures here]

ii. allocateFromRegion()

iii. destroyRegion()

An example implementation is given below.

// region.h
#include <stdlib.h>
#include "list.h"

struct Chunk {
 struct list_elem elem;
 size_t size; // counted in bytes starting from data
 char data[0];
};

typedef struct _Region {
 struct list chunks; // list of chunks
 struct Chunk *current; // current chunk
 void *next; // next available bytes in current chunk
} Region;

// region.c
#include "region.h"

#define CHUNK_SIZE 4096
#define max(a, b) ((a) > (b) ? (a) : (b))

static void
allocateChunk(Region *r, size_t minsz) {
 struct Chunk * c = malloc(max(CHUNK_SIZE,
 minsz + sizeof(struct Chunk)));
 c->size = CHUNK_SIZE - sizeof(struct Chunk);
 list_push_back(&r->chunks, &c->elem);
 r->current = c;
 r->next = c->data;
}

CS 3214 Sample Final Exam (Spring 2016)

7/11

Region *
createRegion()
{
 Region * r = malloc(sizeof (Region));
 list_init(&r->chunks);
 allocateChunk(r, 0);
 return r;
}

void *
allocateFromRegion(Region *r, size_t sz)
{
 // allocate new chunk if needed (uncommon case)
 if (r->next + sz > (void *)r->current->data + r->current->size)
 allocateChunk(r, sz);

 void * m = r->next;
 r->next += sz;
 return m;
}

void
destroyRegion(Region *r)
{
 for (struct list_elem *e = list_begin(&r->chunks);
 e != list_end(&r->chunks);) {
 struct Chunk *c = list_entry(e, struct Chunk, elem);
 e = list_remove(e);
 free (c);
 }
 free (r);
}

Your solution needed to explain only a basic outline of a working implementation
– it should include an efficient, “bump-a-pointer” allocator and some way to link
multiple chunks of continuous memory.
Partial credit was given for a solution advocates allocating the entire region
contiguously (which is as efficient in terms of allocation time, but would suffer too
many practical drawbacks, such as either low limits or large fragmentation.)

5. Networking and HTTP (20 pts)
a) (4 pts) Mismatched senders and receivers. It is well-known that TCP provides

reliable data transmission between a sender and a receiver. Suppose a
receiver is able to receive only small amounts of data per time unit (perhaps
because it performs a considerable amount of processing for each piece of
data it receives.) Suppose a sender sends data at a high rate, outpacing the
receiver’s ability to receive and process the data.
Is TCP designed for this scenario? If not, how will it fail? If so, how will it
handle it?

CS 3214 Sample Final Exam (Spring 2016)

8/11

TCP’s flow control mechanism is designed for this scenario. First, the excess
data will be buffered, then the sender will be blocked from sending more data
until the buffers have been drained by the receiver.

b) (4 pts) The bane that is SIGPIPE. As many of you learned the hard way,

SIGPIPE is sent to processes attempting to write into sockets that are closed
by the other party. The man page for write(2) states:

 EPIPE fd is connected to a pipe or socket whose reading end
is closed. When this happens the writing process will also
receive a SIGPIPE signal. (Thus, the write return value is seen
only if the program catches, blocks or ignores this signal.)

Explain a possible rationale for this design, specifically explain why Unix’s
designers chose to send a signal rather than only flagging an error! (Hint: note
that the provision applies to both pipes and sockets!)

Consider running a | b on the command prompt. If ‘b’ crashed or exited for

whatever reason, it is clear that ‘a’ should terminate as well. However, we don’t
expect ‘a’ to implement any special handling for the case that it is run as part of a
pipeline. Thus the kernel sends a SIGPIPE signal to ‘a’ in this case, which by

default leads to its termination. This works equally nicely in a one-process-per-
client approach to network servers – if a client disconnects, the server process
serving it will terminate. In a multi-threaded approach, more care is needed.

c) (2 pts) In HTTP, the Content-Type: response header describes the type of

the content being returned; why is it necessary?

It is necessary because the content type cannot in general be inferred from
anything else – in particular, it cannot be inferred from the URL
(www.google.com serves text/html but does not end in .html). Without it, the
client does not know how to process the served content.

d) (4 pts) When you use ‘curl –v https://www.google.com/’, Google’s HTTP

response contains the following header line (note that line breaks are not
significant):

Set-Cookie: NID=79=UKisvQ_0xMV1-YlFkUfPNTHTSLGAP2Fj0Xnf0uG6CaJe-
bCWv4R8o6SBhYjK2Q11dR-
eB3eZleJBKxRKcqDZW64SrVQxQRpZL26iptPhlFTQhtAFLx6EIp_oGx8DcpdRJe9a
3CDYMip4bQ; expires=Tue, 08-Nov-2016 02:04:31 GMT; path=/;
domain=.google.com; HttpOnly

How did Google’s server compute the part that is highlighted in bold (79=…) and

what purpose does it have?

https://www.google.com/

CS 3214 Sample Final Exam (Spring 2016)

9/11

i. How computed:

It is computed using a cryptographically secure hash function so as to not be
forgeable.

ii. Used for:

Identifying future HTTP requests made by the client as belonging to the same
session.

e) (6 pts) Consider the following screenshot, which shows a timeline of loaded

resources when a user visits a web page; this timeline was obtained from the
network panel in the Chrome developer console.

i. Why are some resources loaded sequentially?

Because some resources are referenced in earlier resources (e.g., index.html
includes a <script> element referring to sysstatwidget.js; thus the browser can’t

start fetching them until it has received and parsed the document referencing
them.

ii. Why are not all resources loaded sequentially?

In HTTP/1.1, the browser will use multiple connections to fetch resources in order
to reduce latency and exploit parallel processing on the server’s part.

iii. Suggest one idea for how to shorten the time until the user can see the
page render in the browser!

Many ideas are possible and are used in practice; examples include:

- Bundling and/or inlining of multiple .js files into one
- Bundlings of multiple CSS stylesheets into one
- Asynchronous loaders where only essential JavaScript is loaded initially,

without blocking the browser’s ability to render the page
- (in HTTP/2.0) server push where the server anticipates that the client will

need those documents.

CS 3214 Sample Final Exam (Spring 2016)

10/11

6. Virtualization (9 pts)
a) (3 pts) What is the key difference between the Java (or C#) virtual machine

and a virtual machine running on Amazon EC2?

The instruction set of the Java/C# virtual machines is artificial, whereas the
instruction of an Amazon EC2 VM is a subset of an existing, real ISA (usually
x86).

(This is not withstanding attempts in the 1990s to construct processors that can
directly execute Java bytecode).

b) (6 pts) Consider the following marketing slide from Intel’s Software and

Services Group, which describes features introduced into Intel’s recent
product lines related to virtualization:

Mention 2 issues related to the x86’s architecture original design that
impeded virtualization and which are addressed by these features!

i. (Issue 1)

The x86 architecture was not virtualizable because it contained sensitive
instructions that behaved differently in user than in kernel mode, but did not
cause a trap. This made traditional deprivileging impossible. See [Bugnion et al,
2012, Section 2] for more details. VT-x hardware assists corrects that.

ii. (Issue 2)

http://www.cs.columbia.edu/~cdall/candidacy/pdf/Bugnion2012.pdf
http://www.cs.columbia.edu/~cdall/candidacy/pdf/Bugnion2012.pdf

CS 3214 Sample Final Exam (Spring 2016)

11/11

The MMU was also difficult to virtualize since it uses a hardware-reloaded TLB.
This required that the hardware page table be maintained by the hypervisor via
expensive shadow page tables. Intel “EPT” – extended page tables allows the
nesting of page tables so that guest OS and hypervisor can independently
compute their part of the virtual to machine address mappings.

Another possible answer includes the difficulty of virtualizing I/O devices, which
required either device drivers in the hypervisor or a split driver architecture.
Intel’s directed I/O architecture allows the hypervisor to directly assign devices to
virtual machines so that the device drivers can run inside those VMs.

7. Essay Question: Shell or no shell? (16 pts)
Today, Linux is the operating system with the largest installed base. Yet, most of
these installations are via its Android variety, which (by default) does not even
offer its users access to an interactive command line shell. In light of this fact, is
learning how to write a shell for a Unix-like OS outdated in an educational context
such as this course?

Briefly discuss your view on this subject, considering pros and cons!

Note: This question will be graded both for content/soundness of your technical
arguments (10 pts) and for your ability to communicate effectively in writing (6
pts). Your answer should be well-written, organized, and clear.

No solution provided.

