
CS 3214 Spring 2021 Test 2 Solutions

September 13, 2021

Contents

1 Async (9 pts) 2

2 Concurrency Bugs (15 pts) 7
2.1 Reading Helgrind (6 pts) . 7
2.2 A Bug in Mozilla (9 pts) . 9

3 Map Reduce, Threaded (12 pts) 12

4 Deadlock Detection (12 pts) 18

5 Are we there yet? Roadblocks to increased multithreading utilization. (12 pts) 26

Rules

• This exam is open book, open notes, and open Internet, but in a read-only way.

• You are not allowed to post or otherwise communicate with anyone else about these problems.

• You are required to cite any sources you use, except for lecture material, source code provided
as part of the class materials, and the textbook.

1

1 Async (9 pts)

In the handout of project 2, we motivated the need for a fork-join threadpool by demonstrating
what results when languages provide an async facility without also providing an underlying ef-
ficient threadpool implementation. We used this C++ program which performs a parallel sum
computation:

1 #include <iostream>

2 #include <vector>

3 #include <algorithm>

4 #include <numeric>

5 #include <future>

6

7 template <typename RAIter>

8 int parallel_sum(RAIter beg, RAIter end)

9 {

10 auto len = std::distance(beg, end);

11 if (len < 1000)

12 return std::accumulate(beg, end, 0);

13

14 RAIter mid = beg + len/2;

15 auto handle = std::async(std::launch::async,

16 parallel_sum<RAIter>, mid, end);

17 int sum = parallel_sum(beg, mid);

18 return sum + handle.get();

19 }

20

21 int main()

22 {

23 std::vector<int> v(100000, 1);

24 std::cout << "The sum is " << parallel_sum(v.begin(), v.end())

25 << '\n';

26 }

A C version of such a program was included in the tests accompanying p2 where it was executed
by the threadpool you built. In this question, you are asked to explore how much complexity
implementing a threadpool added by developing an equally naive async implementation in C.
Specifically, you should implement the functions async and get below such that the resulting
program computes a parallel sum in the same way the C++ program does, which is by devoting a
new and separate thread to each asynchronous task. Note the restrictions on where you may add
code.

Your implementation should be reliable and data race free. For the purposes of this question,
you do not need to worry about situations in which creating a new thread may fail due to reaching
a per-user limit.

1 #include <pthread.h>

2

2 #include <stddef.h>

3 #include <stdlib.h>

4 #include <stdio.h>

5

6 typedef int (*async_function_t)(void *);

7 /***/

8 // you may make changes below this line

9

10 struct future {

11 // implement this

12 };

13 /* add any additional functions, variables, and data structures here */

14

15 // obtain the result of this asynchronous computation

16 // if necessary, block until the result is available

17 // frees the provided future so no future accesses are

18 // possible

19 int get(struct future *f)

20 {

21 // implement this

22 }

23

24 // start this asynchronous function in a new thread, passing it args

25 // returns a dynamically allocate future to refer to the computation

26 struct future * async(async_function_t fun, void *args)

27 {

28 // implement this

29 }

30

31 // you may not make changes below this line

32 // --

33

34 struct args {

35 int *beg, *end;

36 };

37

38 int parallel_sum(struct args *args)

39 {

40 int *beg = args->beg, *end = args->end;

41

42 ptrdiff_t len = end - beg;

43 if (len < 1000) {

44 int sum = 0;

45 while (beg < end)

46 sum += *beg++;

47 return sum;

3

48 }

49

50 int *mid = beg + len/2;

51 struct args rhalf = { .beg = mid, .end = end };

52 struct future * handle = async((async_function_t) parallel_sum, &rhalf);

53 struct args lhalf = { .beg = beg, .end = mid };

54 return parallel_sum(&lhalf) + get(handle);

55 }

56

57 #define N 1000000

58 int v[N];

59 int main()

60 {

61 for (int i = 0; i < N; i++)

62 v[i] = 1;

63

64 struct args whole = { .beg = v, .end = v + N };

65 printf("The sum is %d\n", parallel_sum(&whole));

66 }

[Solution] The solution involves starting a new thread that receives the future, executes it, and
stores the result. This thread is joined in future get. The techniques used are very similar to those
in project 2.

1 #include <pthread.h>

2 #include <stddef.h>

3 #include <stdlib.h>

4 #include <stdio.h>

5

6 typedef int (*async_function_t)(void *);

7 /***/

8 // you may make changes below this line

9

10 struct future {

11 pthread_t t;

12 async_function_t task;

13 void *args;

14 int result;

15 };

16

17 static void * run(void *arg)

18 {

19 struct future * f = arg;

20 f->result = f->task(f->args);

21 return NULL;

22 }

4

23

24 // obtain the result of this asynchronous computation

25 // if necessary, block until the result is available

26 // frees the provided future so no future accesses are

27 // possible

28 int get(struct future *f) {

29 pthread_join(f->t, NULL);

30 int rc = f->result;

31 free(f);

32 return rc;

33 }

34

35 // start this asynchronous function in a new thread, passing it args

36 // returns a dynamically allocate future to refer to the computation

37 struct future * async(async_function_t fun, void *args)

38 {

39 struct future *f = malloc(sizeof *f);

40 f->task = fun;

41 f->args = args;

42 pthread_create(&f->t, NULL, run, f);

43 return f;

44 }

45

46 // you may not make changes below this line

47 // --

48

49 struct args {

50 int *beg, *end;

51 };

52

53 int parallel_sum(struct args *args)

54 {

55 int *beg = args->beg, *end = args->end;

56

57 ptrdiff_t len = end - beg;

58 if (len < 1000) {

59 int sum = 0;

60 while (beg < end)

61 sum += *beg++;

62 return sum;

63 }

64

65 int *mid = beg + len/2;

66 struct args rhalf = { .beg = mid, .end = end };

67 struct future * handle = async((async_function_t) parallel_sum, &rhalf);

68 struct args lhalf = { .beg = beg, .end = mid };

5

69 return parallel_sum(&lhalf) + get(handle);

70 }

71

72 #define N 1000000

73 int v[N];

74 int main()

75 {

76 for (int i = 0; i < N; i++)

77 v[i] = 1;

78

79 struct args whole = { .beg = v, .end = v + N };

80 printf("The sum is %d\n", parallel_sum(&whole));

81 }

6

2 Concurrency Bugs (15 pts)

2.1 Reading Helgrind (6 pts)

Your p2 team partner received the following output when using the Helgrind race detection checker
on their program.

Explain the information you can gather from the output in your own words. What did your
teammate likely do wrong? Be sure to translate and include all relevant characteristics (variable
names, line numbers, etc.) in your explanation.

Here is the output Helgrind produced:

1 ==21540== Helgrind, a thread error detector

2 ==21540== Copyright (C) 2007-2017, and GNU GPL'd, by OpenWorks LLP et al.

3 ==21540== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

4 ==21540== Command: ./helgrind

5 ==21540==

6 ==21540== ---Thread-Announcement--

7 ==21540==

8 ==21540== Thread #3 was created

9 ==21540== at 0x518470E: clone (clone.S:71)

10 ==21540== by 0x4E4BEC4: create_thread (createthread.c:100)

11 ==21540== by 0x4E4BEC4: pthread_create@@GLIBC_2.2.5 (pthread_create.c:797)

12 ==21540== by 0x4C38A27: ??? (in /usr/lib/valgrind/vgpreload_helgrind-amd64-linux.so)

13 ==21540== by 0x1089A2: main (helgrind.c:37)

14 ==21540==

15 ==21540== ---Thread-Announcement--

16 ==21540==

17 ==21540== Thread #2 was created

18 ==21540== at 0x518470E: clone (clone.S:71)

19 ==21540== by 0x4E4BEC4: create_thread (createthread.c:100)

20 ==21540== by 0x4E4BEC4: pthread_create@@GLIBC_2.2.5 (pthread_create.c:797)

21 ==21540== by 0x4C38A27: ??? (in /usr/lib/valgrind/vgpreload_helgrind-amd64-linux.so)

22 ==21540== by 0x10897F: main (helgrind.c:36)

23 ==21540==

24 ==21540== --

25 ==21540==

26 ==21540== Lock at 0x309080 was first observed

27 ==21540== at 0x4C3603C: ??? (in /usr/lib/valgrind/vgpreload_helgrind-amd64-linux.so)

28 ==21540== by 0x1088A1: thread2 (helgrind.c:22)

29 ==21540== by 0x4C38C26: ??? (in /usr/lib/valgrind/vgpreload_helgrind-amd64-linux.so)

30 ==21540== by 0x4E4B6DA: start_thread (pthread_create.c:463)

31 ==21540== by 0x518471E: clone (clone.S:95)

32 ==21540== Address 0x309080 is 0 bytes inside data symbol "lock2"

33 ==21540==

34 ==21540== Lock at 0x309040 was first observed

35 ==21540== at 0x4C3603C: ??? (in /usr/lib/valgrind/vgpreload_helgrind-amd64-linux.so)

36 ==21540== by 0x108849: thread1 (helgrind.c:11)

37 ==21540== by 0x4C38C26: ??? (in /usr/lib/valgrind/vgpreload_helgrind-amd64-linux.so)

38 ==21540== by 0x4E4B6DA: start_thread (pthread_create.c:463)

39 ==21540== by 0x518471E: clone (clone.S:95)

40 ==21540== Address 0x309040 is 0 bytes inside data symbol "lock1"

41 ==21540==

42 ==21540== Possible data race during read of size 4 at 0x3090A8 by thread #3

43 ==21540== Locks held: 1, at address 0x309080

44 ==21540== at 0x1088AF: thread2 (helgrind.c:24)

45 ==21540== by 0x4C38C26: ??? (in /usr/lib/valgrind/vgpreload_helgrind-amd64-linux.so)

7

46 ==21540== by 0x4E4B6DA: start_thread (pthread_create.c:463)

47 ==21540== by 0x518471E: clone (clone.S:95)

48 ==21540==

49 ==21540== This conflicts with a previous write of size 4 by thread #2

50 ==21540== Locks held: 1, at address 0x309040

51 ==21540== at 0x108860: thread1 (helgrind.c:13)

52 ==21540== by 0x4C38C26: ??? (in /usr/lib/valgrind/vgpreload_helgrind-amd64-linux.so)

53 ==21540== by 0x4E4B6DA: start_thread (pthread_create.c:463)

54 ==21540== by 0x518471E: clone (clone.S:95)

55 ==21540== Address 0x3090a8 is 0 bytes inside data symbol "gvar"

56 ==21540==

[Solution] The Helgrind messages shows that 2 threads access a shared 32-bit variable gvar

concurrently. These accesses were concurrent because the programmer failed to synchronize access
to them with a lock that was held when both threads accessed the variable. Instead, Helgrind
reports that Thread #3 held a mutex named lock2 when accessing the variable on line helgrind.c:24
whereas Thread #2 held a mutex named lock1 when accessing the same variable on line 13.

Here is the program that was used to create this Helgrind output:

1 #include <pthread.h>

2 #include <stdio.h>

3

4 pthread_mutex_t lock1 = PTHREAD_MUTEX_INITIALIZER;

5 pthread_mutex_t lock2 = PTHREAD_MUTEX_INITIALIZER;

6

7 static void *

8 thread1(void * _tn)

9 {

10 int * shared = (int *) _tn;

11 pthread_mutex_lock(&lock1);

12 for (int i = 0; i < 1000000; i++)

13 (*shared)++;

14 pthread_mutex_unlock(&lock1);

15 return NULL;

16 }

17

18 static void *

19 thread2(void * _tn)

20 {

21 int * shared = (int *) _tn;

22 pthread_mutex_lock(&lock2);

23 for (int i = 0; i < 1000000; i++)

24 (*shared)++;

25 pthread_mutex_unlock(&lock2);

26 return NULL;

27 }

28

29 static int gvar;

8

30

31 int

32 main()

33 {

34 int N = 2;

35 pthread_t t[N];

36 pthread_create(t + 0, NULL, thread1, &gvar);

37 pthread_create(t + 1, NULL, thread2, &gvar);

38

39 for (int i = 0; i < N; i++)

40 pthread_join(t[i], NULL);

41

42 printf("shared = %d\n", gvar);

43 return 0;

44 }

2.2 A Bug in Mozilla (9 pts)

Concurrency bugs can arise when different threads interact. The following program contains such
a concurrency bug. It was reconstructed from a bug that in the past affected systems such as
Mozilla’s codebase.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <stdbool.h>

4 #include <string.h>

5 #include <unistd.h>

6 #include <pthread.h>

7

8 typedef void *(*worker_func_t)(void *);

9

10 enum worker_state { PENDING, STARTED, FINISHED };

11 struct worker {

12 pthread_t thread_id;

13 enum worker_state state;

14 };

15

16 pthread_mutex_t glock = PTHREAD_MUTEX_INITIALIZER; // protects worker1 and *worker1

17 struct worker *worker1;

18

19 struct worker *start_worker(worker_func_t wfun, void *wdata)

20 {

21 struct worker *w = malloc(sizeof *w);

22 w->state = PENDING;

23 pthread_create(&w->thread_id, NULL, wfun, wdata);

9

24 return w;

25 }

26

27 static void *

28 worker1_fun(void *_)

29 {

30 pthread_mutex_lock(&glock);

31 worker1->state = STARTED;

32 pthread_mutex_unlock(&glock);

33

34 printf("worker working\n");

35

36 pthread_mutex_lock(&glock);

37 worker1->state = FINISHED;

38 pthread_mutex_unlock(&glock);

39 return NULL;

40 }

41

42 int

43 main()

44 {

45 struct worker * w = start_worker(worker1_fun, NULL);

46 pthread_mutex_lock(&glock);

47 worker1 = w;

48 pthread_mutex_unlock(&glock);

49 pthread_join(worker1->thread_id, NULL);

50 printf("all done\n");

51 }

1. (3 pts) Determine the bug and explain how the program would fail if the bug manifested
itself.

2. (3 pts) Is the bug you found a data race? Data races are defined in lecture; or more formally
in the C11 memory model [URL] as follows:

When an evaluation of an expression writes to a memory location and another
evaluation reads or modifies the same memory location, the expressions are said
to conflict. A program that has two conflicting evaluations has a data race unless
either

• both conflicting evaluations are atomic operations

• one of the conflicting evaluations happens-before1 another

Justify your answer, referring to line numbers in the code if this is necessary.

3. (3 pts) Suggest a way to fix the bug.

1Here, happens-before refers to the cross-thread relationship between events, see Slide 11.

10

https://en.cppreference.com/w/c/language/memory_model
https://courses.cs.vt.edu/cs3214/videos/locking.pdf

[Solution]

1. The program does not guarantee that the global variable ’worker1’ is set on line 47 before it
is accessed on line 31. If line 31 executes before the assignment on line 47 it would result in a
segmentation violation due to accessing a NULL pointer. (In fact, this can be observed when
running this code under valgrind.)

2. This is not a data race since the mutex glock serializes these 2 operations. It is an ordering
violation.

3. It can be fixed in a number of ways, for instance,

(a) switching lines 45 and 46, thus ensuring that line 31 executes after line 48.

(b) Moving ’wdata’ into ‘struct worker’, passing ’w’ instead of ’wdata’ on line 23 and setting
’worker1’ in ’worker1 fun’.

(c) Using a semaphore (initialized with 0) that is waited for at the beginning of ’worker1 fun’
and signaled after the ’worker1 = w’ assignment.

The original Mozilla bug was both a data race and an ordering violation and was reported in:
Learning from mistakes: a comprehensive study on real world concurrency bug characteristics by
Lu et al at ASPLOS 2008 (Figure 2). [URL]

11

http://www.cs.columbia.edu/~junfeng/09fa-e6998/papers/concurrency-bugs.pdf
http://www.cs.columbia.edu/~junfeng/09fa-e6998/papers/concurrency-bugs.pdf

3 Map Reduce, Threaded (12 pts)

In Test 1, you were asked to simulate a MapReduce network using inter-process communication
(IPC), specifically Unix pipes. In this problem, we explore how to perform the same simulation
using inter-thread communication using what we call “thread pipes.” A thread pipe, like a Unix
pipe, supports three operations:

• pipe send: sends a message of MSG SIZE bytes through the pipe. Messages are indivisible
(atomic).

• pipe receive: receives the next message of MSG SIZE from the pipe If multiple threads call
pipe receive, any of them may receive the message.

• pipe initialize: initializes a thread pipe object in place

Implement the functions pipe initialize, pipe send, and pipe receive so that the following
program works. Note that the execution result will be the same as was observed in Test 1.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <stdbool.h>

4 #include <string.h>

5 #include <unistd.h>

6 #include <pthread.h>

7 #include <sys/wait.h>

8 #include "list.h"

9

10 #define THREADS 7

11 #define NPIPES 11

12 #define TOTAL 100

13 #define MSG_SIZE 20

14

15 /* you may not change anything above this line */

16

17 struct thread_pipe {

18 // implement this

19 };

20

21 // define any other data structures here

22

23 /* Initialize a thread pipe object in place */

24 int

25 pipe_initialize(struct thread_pipe *pipe)

26 {

27 }

28

29 /* Send a msg of size MSG_SIZE to a thread pipe

12

https://courses.cs.vt.edu/~cs3214/spring2021/exams/test1/CS3214_Spring_2021_Test_1_Solution.pdf

30 * The pipe does not need to impose a limit on the number of

31 * items currently contained in the pipe.

32 */

33 void

34 pipe_send(struct thread_pipe *pipe, char msg[MSG_SIZE])

35 {

36 }

37

38 /* Receive a msg of size MSG_SIZE to a thread pipe.

39 * Blocks until a msg is in the pipe.

40 */

41 void

42 pipe_receive(struct thread_pipe *pipe, char msg[MSG_SIZE])

43 {

44 }

45

46 /*

47 * You may not make any changes below this line

48 */

49 static struct thread_pipe pip[NPIPES]; //driver-A, A-B, A-C, A-D, B-E, C-E, C-F, D-F, E-G, F-G

50 static int a_to_b, a_to_c, a_to_d, c_to_e, c_to_f, total;

51

52 /* Read `total` messages from read end of pipe pair in `fromfd` and

53 * round-robin distribute them to pipes at `(tofd + i) % stride`

54 *

55 * For simplicity, we send always MSG_SIZE-byte messages.

56 */

57 static void process(const char *name, struct thread_pipe *from, struct thread_pipe *to,

58 int total, int stride)

59 {

60 char msgi[MSG_SIZE], msgo[MSG_SIZE];

61

62 for (int count = 0; count < total; count++) {

63 pipe_receive(from, msgi);

64 snprintf(msgo, sizeof msgo, "%s%s", name, msgi);

65 pipe_send(&to[count%stride], msgo);

66 }

67 }

68

69 static int divceil(int x, int y)

70 {

71 return (x + y - 1) / y;

72 }

73

74 static void *task_a(void *_)

75 {

13

76 process("A", &pip[0], &pip[1], total, 3);

77 return NULL;

78 }

79

80 static void *task_b(void *_)

81 {

82 process("B", &pip[1], &pip[4], a_to_b, 1);

83 return NULL;

84 }

85

86 static void *task_c(void *_)

87 {

88 process("C", &pip[2], &pip[5], a_to_c, 2);

89 return NULL;

90 }

91

92 static void *task_d(void *_)

93 {

94 process("D", &pip[3], &pip[7], a_to_d, 1);

95 return NULL;

96 }

97

98 static void *task_e(void *_)

99 {

100 process("E", &pip[4], &pip[8], a_to_b, 1);

101 process("E", &pip[5], &pip[8], c_to_e, 1);

102 return NULL;

103 }

104

105 static void *task_f(void *_)

106 {

107 process("F", &pip[6], &pip[9], c_to_f, 1);

108 process("F", &pip[7], &pip[9], a_to_d, 1);

109 return NULL;

110 }

111

112 static void *task_g(void *_)

113 {

114 process("G", &pip[8], &pip[10], a_to_b + c_to_e, 1);

115 process("G", &pip[9], &pip[10], c_to_f + a_to_d, 1);

116 return NULL;

117 }

118

119 typedef void * (*thread_func_t)(void *);

120 void shuffle_threads(thread_func_t *funcs, size_t n)

121 {

14

122 for (int i = 0; i < n - 1; i++) {

123 int j = i + rand() / (RAND_MAX / (n - i) + 1);

124 thread_func_t t = funcs[j];

125 funcs[j] = funcs[i];

126 funcs[i] = t;

127 }

128 }

129

130 int

131 main(int ac, char *av[])

132 {

133 // compute how many messages will be sent

134 total = ac > 1 ? atoi(av[1]) : TOTAL;

135 a_to_b = divceil(total, 3);

136 a_to_c = divceil(total-1, 3);

137 a_to_d = divceil(total-2, 3);

138 c_to_e = divceil(a_to_c, 2);

139 c_to_f = divceil(a_to_c-1, 2);

140

141 // creating all the pipes

142 for (int i = 0; i < NPIPES; i++)

143 if (pipe_initialize(&pip[i])<0) {

144 fprintf(stderr, "Pipe creation error\n");

145 return EXIT_FAILURE;

146 }

147

148 // let's create the threads next

149 pthread_t t[THREADS];

150 thread_func_t tasks[THREADS] = { task_a, task_b, task_c, task_d, task_e, task_f, task_g };

151

152 // for a bit of challenge, shuffle the order in which they are started

153 srand(ac > 2 ? atoi(av[2]) : time(NULL));

154 shuffle_threads(tasks, THREADS);

155

156 for (int i = 0; i < THREADS; i++)

157 pthread_create(t+i, NULL, tasks[i], NULL);

158

159 // send numbers to A thread

160 for (int i = 0; i < total; i++) {

161 char msg[MSG_SIZE];

162 snprintf(msg, sizeof msg, "%d\n", i);

163 pipe_send(&pip[0], msg);

164 }

165

166 // get numbers from last thread

167 for (int i = 0; i < total; i++) {

15

168 char msg[MSG_SIZE];

169 pipe_receive(&pip[10], msg);

170 printf("%s", msg);

171 }

172

173 // join threads

174 for (int i = 0; i < THREADS; i++)

175 pthread_join(t[i], NULL);

176 }

[Solution] The solution is a simple application of the producer/consumer queue idea, for in-
stance implemented with a mutex to protect a list of messages and a condition variable to signal
availability. We only show the required functions below.

1 struct thread_pipe {

2 pthread_mutex_t lock;

3 pthread_cond_t msg_available;

4 struct list items;

5 };

6

7 struct pipe_item {

8 char msg[MSG_SIZE];

9 struct list_elem elem;

10 };

11

12 /* Initialize a thread pipe object in place */

13 int

14 pipe_initialize(struct thread_pipe *pipe)

15 {

16 list_init(&pipe->items);

17 int rc = pthread_mutex_init(&pipe->lock, NULL);

18 return rc ? rc : pthread_cond_init(&pipe->msg_available, NULL);

19 }

20

21 /* Send a msg of size MSG_SIZE to a thread pipe

22 * The pipe does not need to impose a limit on the number of

23 * items currently contained in the pipe.

24 */

25 void

26 pipe_send(struct thread_pipe *pipe, char msg[MSG_SIZE])

27 {

28 struct pipe_item *item = malloc(sizeof *item);

29 pthread_mutex_lock(&pipe->lock);

30 list_push_back(&pipe->items, &item->elem);

31 memcpy(item->msg, msg, MSG_SIZE);

32 pthread_cond_signal(&pipe->msg_available);

16

33 pthread_mutex_unlock(&pipe->lock);

34 }

35

36 /* Receive a msg of size MSG_SIZE to a thread pipe.

37 * Blocks until a msg is in the pipe.

38 */

39 void

40 pipe_receive(struct thread_pipe *pipe, char msg[MSG_SIZE])

41 {

42 pthread_mutex_lock(&pipe->lock);

43 while (list_empty(&pipe->items))

44 pthread_cond_wait(&pipe->msg_available, &pipe->lock);

45

46 struct pipe_item * item = list_entry(list_pop_front(&pipe->items),

47 struct pipe_item, elem);

48 memcpy(msg, item->msg, MSG_SIZE);

49 free(item);

50 pthread_mutex_unlock(&pipe->lock);

51 }

17

Figure 1: This resource allocation graph shows a deadlock situation that arose with 4 processes
and 4 resources.

4 Deadlock Detection (12 pts)

Consider the resource allocation graph shown in Figure 1 which is reproduced from the lecture on
deadlocks. In this problem, you are asked to completed a multi-threaded program that produces
the exact deadlock shown in this graph and that can detect when it deadlocks.

In the following program the 4 involved processes P1, P2, P3, and P4 are represented as threads
1 through 4, executing functions P1fun, P2fun, P3fun, and P4fun, respectively. These threads
(once implemented) should acquire resources such that the deadlock situation shown in Figure 1
arises. A barrier divides the actions of each thread in two sequential parts. All threads execute
their second part after all threads have executed their first part. However, the threads execute their
respective actions within each part concurrently with each other.

• (6 pts) Implement each thread such that the program deadlocks and the resource acquisition
graph shown in the Figure results, no matter the order in which the scheduler may schedule
those threads.

• (6 pts) Implement the function check for deadlock such that it detects a cycle in the resource
acquisition graph when a process attempts to acquire a resource. Your deadlock detection
algorithm should be general and not assume the specific graph shown in the Figure. Follow
the required output exactly, which will be explained below.

18

1 #include <pthread.h>

2 #include <stdlib.h>

3 #include <stdio.h>

4 #include <unistd.h>

5 #include <semaphore.h>

6

7 struct Process;

8 static _Thread_local struct Process *current;

9

10 pthread_mutex_t glock = PTHREAD_MUTEX_INITIALIZER;

11

12 struct Resource {

13 struct Process *heldby; // process currently holding the resource

14 char *name;

15 sem_t sem; // represents the resource

16 };

17

18 struct Process {

19 struct Resource *acquires; // resource this process is trying to acquire

20 pthread_t thread;

21 char *name;

22 };

23

24 /* Process `p` is about to request resource `r`.

25 * Check for deadlock.

26 */

27 static void

28 check_for_deadlock(struct Process *p, struct Resource *r)

29 {

30 printf("checking deadlock as process %s wants %s", p->name, r->name);

31 /* if the attempt by process p to acquire resource r would

32 * cause a deadlock, output this and then abort()

33 printf(" - found DEADLOCK\n");

34 abort();

35 */

36 printf(" - no deadlock\n");

37 }

38

39 void acquire(struct Resource *r)

40 {

41 pthread_mutex_lock(&glock);

42 check_for_deadlock(current, r);

43 if (r->heldby == NULL) {

44 r->heldby = current;

45 current->acquires = NULL;

19

46 } else {

47 current->acquires = r;

48 }

49 pthread_mutex_unlock(&glock);

50 if (current->acquires)

51 sem_wait(&r->sem);

52 }

53

54 struct Process P1 = { .name = "P1" },

55 P2 = { .name = "P2" },

56 P3 = { .name = "P3" },

57 P4 = { .name = "P4" };

58

59 struct Resource R1 = { .name = "R1" },

60 R2 = { .name = "R2" },

61 R3 = { .name = "R3" },

62 R4 = { .name = "R4" };

63

64 static pthread_barrier_t barrier;

65

66 static void * P1fun(void *process)

67 {

68 current = process;

69 // you may add code here

70 pthread_barrier_wait(&barrier);

71 // you may add code here

72 return NULL;

73 }

74

75 static void * P2fun(void *process)

76 {

77 current = process;

78 // you may add code here

79 pthread_barrier_wait(&barrier);

80 // you may add code here

81 return NULL;

82 }

83

84 static void * P3fun(void *process)

85 {

86 current = process;

87 // you may add code here

88 pthread_barrier_wait(&barrier);

89 // you may add code here

90 return NULL;

91 }

20

92

93 static void * P4fun(void *process)

94 {

95 current = process;

96 // you may add code here

97 pthread_barrier_wait(&barrier);

98 // you may add code here

99 return NULL;

100 }

101

102 int

103 main()

104 {

105 sem_init(&R1.sem, 0, 0);

106 sem_init(&R2.sem, 0, 0);

107 sem_init(&R3.sem, 0, 0);

108 sem_init(&R4.sem, 0, 0);

109 pthread_barrier_init(&barrier, NULL, 4);

110 pthread_create(&P1.thread, NULL, P1fun, &P1);

111 pthread_create(&P2.thread, NULL, P2fun, &P2);

112 pthread_create(&P3.thread, NULL, P3fun, &P3);

113 pthread_create(&P4.thread, NULL, P4fun, &P4);

114

115 pthread_join(P1.thread, NULL);

116 pthread_join(P2.thread, NULL);

117 pthread_join(P3.thread, NULL);

118 pthread_join(P4.thread, NULL);

119 }

Note that since the program is intended to function as an example of a system that is guaranteed
to deadlock, a release() operation is not implemented.

The expected output of this program will be similar to the following:

checking deadlock as process ?? wants ?? - no deadlock

checking deadlock as process ?? wants ?? - no deadlock

...

checking deadlock as process ?? wants ?? - found DEADLOCK

Aborted (core dumped)

where the ?? are elided (since you need to find them as part of task 1). The output order does not
have to be deterministic.

[Solution]
A possible output is shown here:

checking deadlock as process P1 wants R1 - no deadlock

checking deadlock as process P4 wants R4 - no deadlock

checking deadlock as process P3 wants R3 - no deadlock

21

checking deadlock as process P3 wants R2 - no deadlock

checking deadlock as process P3 wants R4 - no deadlock

checking deadlock as process P2 wants R2 - no deadlock

checking deadlock as process P1 wants R2 - no deadlock

checking deadlock as process P4 wants R1 - found DEADLOCK

Aborted (core dumped)

For part 1, the solution requires 2 phases: in phase 1, every process should acquire the resource
that the resource allocation graph shows it holds (e.g., P1 holds R1, P3 holds R2 and R3, and P4
holds R3). In Phase 2, they will be trying to acquire the resource shown in the request edges. The
last attempt will lead to detectable deadlock

For part 2, the deadlock detection can be performed with a simple loop following the request
and assignment edges. A cycle would lead back to the process currently trying to acquire a resource.

The complete solution is shown below:

1 #include <pthread.h>

2 #include <stdlib.h>

3 #include <stdio.h>

4 #include <unistd.h>

5 #include <semaphore.h>

6

7 struct Process;

8 static _Thread_local struct Process *current;

9

10 pthread_mutex_t glock = PTHREAD_MUTEX_INITIALIZER;

11

12 struct Resource {

13 struct Process *heldby; // process currently holding the resource

14 char *name;

15 sem_t sem; // represents the resource

16 };

17

18 struct Process {

19 struct Resource *acquires; // resource this process is trying to acquire

20 pthread_t thread;

21 char *name;

22 };

23

24 /* Process `p` is about to request resource `r`.

25 * Check for deadlock.

26 */

27 static void

28 check_for_deadlock(struct Process *p, struct Resource *r)

29 {

30 printf("checking deadlock as process %s wants %s", p->name, r->name);

31 for (;;) {

22

32 struct Process *nextp = r->heldby;

33 if (nextp == p) {

34 printf(" - found DEADLOCK\n");

35 abort();

36 }

37 if (nextp != NULL && nextp->acquires) {

38 // printf(" and process %s wants %s", nextp->name, r->name);

39 r = nextp->acquires;

40 } else

41 break;

42 }

43 printf(" - no deadlock\n");

44 }

45

46 void acquire(struct Resource *r)

47 {

48 pthread_mutex_lock(&glock);

49 check_for_deadlock(current, r);

50 if (r->heldby == NULL) {

51 r->heldby = current;

52 current->acquires = NULL;

53 } else {

54 current->acquires = r;

55 }

56 pthread_mutex_unlock(&glock);

57 if (current->acquires)

58 sem_wait(&r->sem);

59 }

60

61 struct Process P1 = { .name = "P1" },

62 P2 = { .name = "P2" },

63 P3 = { .name = "P3" },

64 P4 = { .name = "P4" };

65

66 struct Resource R1 = { .name = "R1" },

67 R2 = { .name = "R2" },

68 R3 = { .name = "R3" },

69 R4 = { .name = "R4" };

70

71 static pthread_barrier_t barrier;

72

73 static void * P1fun(void *process)

74 {

75 current = process;

76 // you may add code here

77 acquire(&R1);

23

78 pthread_barrier_wait(&barrier);

79 // you may add code here

80 acquire(&R2);

81 return NULL;

82 }

83

84 static void * P2fun(void *process)

85 {

86 current = process;

87 // you may add code here

88 pthread_barrier_wait(&barrier);

89 // you may add code here

90 acquire(&R2);

91 return NULL;

92 }

93

94 static void * P3fun(void *process)

95 {

96 current = process;

97 // you may add code here

98 acquire(&R3);

99 acquire(&R2);

100 pthread_barrier_wait(&barrier);

101 // you may add code here

102 acquire(&R4);

103 return NULL;

104 }

105

106 static void * P4fun(void *process)

107 {

108 current = process;

109 // you may add code here

110 acquire(&R4);

111 pthread_barrier_wait(&barrier);

112 // you may add code here

113 acquire(&R1);

114 return NULL;

115 }

116

117 int

118 main()

119 {

120 sem_init(&R1.sem, 0, 0);

121 sem_init(&R2.sem, 0, 0);

122 sem_init(&R3.sem, 0, 0);

123 sem_init(&R4.sem, 0, 0);

24

124 pthread_barrier_init(&barrier, NULL, 4);

125 pthread_create(&P1.thread, NULL, P1fun, &P1);

126 pthread_create(&P2.thread, NULL, P2fun, &P2);

127 pthread_create(&P3.thread, NULL, P3fun, &P3);

128 pthread_create(&P4.thread, NULL, P4fun, &P4);

129

130 pthread_join(P1.thread, NULL);

131 pthread_join(P2.thread, NULL);

132 pthread_join(P3.thread, NULL);

133 pthread_join(P4.thread, NULL);

134 }

25

5 Are we there yet? Roadblocks to increased multithreading
utilization. (12 pts)

Project 2 inspired a number of you to think about the power of multithreading and how it can affect
the program that you write. Specifically, Eric H. posed a timely and interesting question about the
current state of the usage of parallel programming, part of which I quote/paraphrase below.

Project 2 specification linked to a specific take by researchers from Berkeley who argue that
“parallel programming models, software systems, and a supporting architecture” are key to our
incorporation of parallel systems. However, the documentation also highlights the large number of
software implementations that do not make use of the latest multi-core processors that have become
more common in everyday technology.

[Solution] Some of the reasons/explanations are provided below as an example. We will be
accepting a broad range of clearly-articulated answers for these questions.

1. (4 pts) What are some of the challenges in accomplishing the goal of widespread parallel
programming? (Name at least two.)
[Solution] Reasons can range from difficulty of ensuring correctness in parallel programs,
complex legacy codes, not every program/application has parallelism, emergence of low-power
low-end processors such as in IoT devices, lack of easy-to-use tools, etc.

2. (4 pts) Why do you think there is a mismatch between the software and hardware advance-
ments in parallel computing? (Name at least two reasons.)
[Solution] Reasons can range from lack of coordination between software and hardware
researchers/developers, lack of powerful tools to exploit the hardware features, application
needs, porting of legacy code, difficulty in training new people in hardware-software codesign,
etc.

3. (4 pts) What steps do you believe must be taken to expedite the adoption of parallel computing
systems?
[Solution] Better education and training, use of innovative ways to exploit parallelism such
as function-as-a-service, development of new tools and techniques, novel applications, etc. can
be some of the ways to expedite the adoption of parallel computing systems.

Note: This is an open-ended question. Please provide brief answers with well-formed relevant
arguments.

26

https://cs3214.cs.cloud.vt.edu/t/roadblocks-to-increased-multithreading-utilization/814

	Async (9 pts)
	Concurrency Bugs (15 pts)
	Reading Helgrind (6 pts)
	A Bug in Mozilla (9 pts)

	Map Reduce, Threaded (12 pts)
	Deadlock Detection (12 pts)
	Are we there yet? Roadblocks to increased multithreading utilization. (12 pts)

