
CS 3214 Fall 2020 Final Exam Solutions

December 17, 2020

Contents

1 Networking (28 pts) 3
1.1 Know Your Internet (14 pts) . 3
1.2 Mixing Processes and Sockets (14 pts) . 5

2 Automatic Memory Management (18 pts) 9
2.1 Object Reachability Graphs (8 pts) . 9
2.2 Cycles (5 pts) . 10
2.3 Leak Or Not (5 pts) . 11

3 Virtual Memory (16 pts) 12
3.1 Files and Memory (8 pts) . 12
3.2 To Free or Not to Free (8 pts) . 14

4 Protection/Security (18 pts) 17

5 Dynamic Memory Management (20 pts) 21

1

Rules

• This exam is open book, open notes, and open Internet, but in a read-only way.

• You are not allowed to post or otherwise communicate with anyone else about these
problems.

• You are required to cite any sources you use, except for lecture material, source code
provided as part of the class materials, and the textbook.

• If you have a question about the exam, you may post it as a private question on
Piazza. If it is of interest to others, we will make it public.

• Any errata to this exam will be published prior to 12h before the deadline.

Submission Requirements

Submit a tar file that contains the following files:

• networking.txt with answers to Questions 1.1 and 1.2.

• A.java to answer Question 2.1.

• garbagecycle.txt to answer Question 2.2. This will contain source code in your
chosen language, but for uniformity, please give it this name.

• leakanalysis.txt to answer Question 2.3.

• vm.txt to answer Questions 3.1 and 3.2.

• protection.txt with answers to Question 4.

• allocator.txt with answers to Question 5.

Important: Please download your tar file after you have submitted it and check the
content to ensure you did not upload a corrupted tar file.

2

1 Networking (28 pts)

1.1 Know Your Internet (14 pts)

Find out if the following statements related to networking are true or false. If true, just
add true. If false, write false and correct the statement.

1. In IP networks that are designed with redundant links, traffic will automatically be
rerouted should one of the links fail.

True. Routing protocols are used to find feasible routes even in the presence of
topology changes.

2. In nearly all cases, packets traveling through the Internet follow the geographically
shortest route from their source to their destination.

False. Packets typically travel through multiple networks using exchange points
(or peering links) to switch networks, with little regard to geographic proximity. For
instance, a packet from a Blacksburg residence might travel to Washington, D.C.,
switch networks, and come back to the Virginia Tech campus.

3. The public Internet consists not only of one network, but of multiple interconnected
networks.

True. These networks are called AS, or autonomous systems.

4. When designing modern web applications, the impact of propagation delay is negli-
gible.

False. The propagation delay provides a physical lower bound for round-trip time,
and if applications require multiple round-trips these delays can quickly add up even
if a single round-trip might incur imperceptible propagation delay. See 7 principles
of rich web applications for more discussion.

5. If a packet-switched network becomes congested, then edge nodes will start rejecting
new connections until the congestion subsides.

False. Typical packet-switched networks do not maintain state about connections
inside the network and do not perform admission control.

6. The term TCP/IP refers to the fact that applications using the IP network must also
use TCP.

3

https://rauchg.com/2014/7-principles-of-rich-web-applications#pre-rendered-pages-are-not-optional
https://rauchg.com/2014/7-principles-of-rich-web-applications#pre-rendered-pages-are-not-optional

False. It’s the other way around: TCP is designed to be used with IP, but other
transport layer protocols (e.g., UDP) can be used with IP.

7. TCP can send data faster or slower depending on the bandwidth of the underlying
network.

True. That’s the function of congestion control which will throttle a connection’s
speed as the available bandwidth in the network decreases and, conversely, send as
fast as the network’s bandwidth allows.

8. TCP authenticates users either using password-based or public-key based authenti-
cation before accepting a connection.

False. TCP does not perform any kind of authentication.

9. An advantage of TCP is that it preserves message boundaries, which greatly simplifies
the design of application-level protocols.

False. TCP does not preserve message boundaries, placing the burden to reestablish
them on application-level protocols.

10. In HTTP/1.1, clients must send a Connection: close header before they can close
the connection.

False. No, the connection close header is entirely optional/advisory. Both parties
can close the connection at any point in time.

11. Web browsers such as Firefox or Chrome typically maintain multiple connections to
each domain from which a website fetches objects.

True. In this way, it’s easier for servers to handle multiple requests in parallel, and
typically more bandwidth can be used. However, clients must not create an excessive
number of connections to obtain an unfair share of server resources. (For HTTP/2,
the answer would be false as using a single connection is an explicit goal of HTTP/2.)

12. For the majority of HTTP transactions, the size of the response is greater than the
size of the request (both including headers and bodies).

4

True. Typical requests do not have a body, and header sizes are small (and don’t
differ much between request/response). Overall, there is more traffic where HTTP
servers provide objects than receive objects (as in the case of a file upload).

13. In a typical HTTP-based application, clients craft cookies using a cryptographic
secret that is securely stored by a user agent such as a browser.

False. The cryptographic secret used to craft cookies must be stored on the server,
not on the client. If it were accessible to the client, the client could craft cookies and
impersonate other users.

14. Servers can detect if a client presents a JWT token that the client (or an intermediate)
tampered with.

True. That’s the purpose of the cryptographic signature that is used in these to-
kens.

1.2 Mixing Processes and Sockets (14 pts)

In a previous CS 3214 Final Exam, students were asked to find out what the following
program does:

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 #include <errno.h>

5 #include <unistd.h>

6 #include <sys/socket.h>

7 #include <netdb.h>

8 #include <pthread.h>

9

10 static int

11 dial(char *host, char *port)

12 {

13 struct addrinfo hint = {

14 .ai_flags = AI_CANONNAME | AI_NUMERICSERV | AI_ADDRCONFIG,

15 .ai_protocol = IPPROTO_TCP

16 };

17

18 struct addrinfo *info;

19 int rc = getaddrinfo(host, port, &hint, &info);

5

20 if (rc != 0)

21 gai_strerror(rc), exit(EXIT_FAILURE);

22

23 while (info) {

24 int s = socket(info->ai_family,

25 info->ai_socktype,

26 info->ai_protocol);

27 if (s < 0)

28 perror("socket"), exit(EXIT_FAILURE);

29

30 if (connect(s, info->ai_addr, info->ai_addrlen) == 0)

31 return s;

32 close(s);

33 }

34 exit(EXIT_FAILURE);

35 }

36

37 struct fdpair {

38 int from, to;

39 };

40

41 static void *

42 shovel(void *_data)

43 {

44 struct fdpair * c = _data;

45 char buf[2048];

46 int bread;

47 while ((bread = read(c->from, buf, sizeof buf)) > 0)

48 write(c->to, buf, bread);

49 return NULL;

50 }

51

52 int

53 main(int ac, char *av[])

54 {

55 int s = dial(av[1], av[2]);

56 struct fdpair p1 = { .from = s, .to = STDOUT_FILENO };

57 struct fdpair p2 = { .from = STDIN_FILENO, .to = s };

58 pthread_t t[2];

59 pthread_create(t, NULL, shovel, &p1);

60 pthread_create(t+1, NULL, shovel, &p2);

6

61 for (int i = 0; i < 2; i++)

62 pthread_join(t[i], NULL);

63 }

The answer [URL] turned out to be that it worked as a slightly reduced variant of the
netcat (nc) utility [URL].

In this question, you’re given a companion program which unfortunately also lacks
documentation

1 #include <stdlib.h>

2 #include <unistd.h>

3 #include <signal.h>

4 #include "socket.h"

5

6 int silent_mode; // needed by socket.c

7

8 int

9 main(int ac, char *av[])

10 {

11 signal(SIGCHLD, SIG_IGN);

12 int socket = socket_open_bind_listen(av[1], 1024);

13 int client;

14

15 while ((client = socket_accept_client(socket)) != -1) {

16 if (fork() == 0) {

17 for (int fd = 0; fd < 3; fd++)

18 dup2(client, fd);

19

20 execvp(av[2], av+2);

21 exit(0);

22 }

23 close(client);

24 }

25 }

This program uses the same socket.c and socket.h as in project 4.

1. (5 pts) Write a brief, man-page like description of what this program does. Be sure
to include usage and a synopsis of its intended function. Denote any functional
limitations you may spot as well (ignore the blatant lack of error checking which only
for this example was elided intentionally for readability).

[Solution]

7

https://courses.cs.vt.edu/~cs3214/fall2020/documents/CS3214_Summer_2020_Final_Exam_Solution.pdf
https://en.wikipedia.org/wiki/Netcat

USAGE:

./inetd port arg0 [arg1...argn] - start a remote network server

DESCRIPTION:

This program accepts two or more arguments, the first one being a port number of a
TCP port to which the server will bind. The second argument is a Unix command.
When a client connects to the server, a child process will be spawned that executes
the command provided as argument, passing on any additional arguments to the
command. All standard streams (standard input, standard output, and standard
error) will be redirected to the accepted TCP connection.

2. (6 pts) How could you use it in conjunction with nc? Provide 2 useful examples.

[Solution]

Any program that communicates via its standard streams can work as an example,
for instance,

• ./inetd 2700 date Provides a simple ’date’ server - clients will receive the
server’s date.

• ./inetd 2700 /bin/bash -i Provides an interactive shell

3. (3 pts) Discuss the security implications of this tool.

[Solution]

As the second example above shows, this command must be used with care since it
can give anyone connecting over the network direct access to the environment and
privileges of the user executing the command. For most practical applications, an
authentication mechanism would need to be added (such as spawning a login program
instead of a shell). If a program is vulnerable and this vulnerability can be triggered
via a specially crafted standard input, an attacker would have the ability to trigger
this vulnerability remotely.

In the early days of the Internet, so-called super servers (like ‘inetd’) were widely
used to have a simple way to configure which network services a host provides in one
point. These included services such as ‘echo‘ which were widely enabled by default.

However, because of rampant misconfiguration and lack of suitable access controls,
such super servers are no longer in wide use today. Instead, by default a minimum
amount of services is enabled, and administrators have to enable additional, separate
services if needed.

8

2 Automatic Memory Management (18 pts)

2.1 Object Reachability Graphs (8 pts)

In systems using automatic memory management, it is important to understand how the
object reachability graph changes as a result of a program’s action. Figure 1 shows a
snapshot of a reachability graph produced by the execution of a small Java program.

Reconstruct this program, and denote with a comment the point in time at which the
reachability graph has the structure displayed in Figure 1.

Figure 1: A snapshot of an object reachability graph produced by a Java program. On the
left, roots are shown, with global static variables in white and stack frames in blue.

[Solution]

1 public class A {

2 static A [] global = new A[3];

3 Integer n;

4 A(int n) { this.n = n; }

5 public static void main(String[] args) {

6 A local;

7 for (int i = 0; i < global.length; i++) {

8 local = new A(i); // here in 2nd iteration where i=1

9 global[i] = local;

10 }

9

11 }

12 }

The snapshot was taken during the 2nd iteration of the loop when the new object was
assigned to local, but before it was assigned to global[i]. But any code that

• Allocates a 3-element global array

• Assigns global[0] to an A instance where n points to a java.lang.Integer of value 0

• Assigns a local variable to an A instance when n points to a java.lang.Integer of value
1

• Has a local variable i set to 1

would work. Note we did require the use of the boxed type as the difference between int

and Integer is important to understand.

2.2 Cycles (5 pts)

According to Wikipedia’s page on Garbage collection, Section Reference Counting, “if two
or more objects refer to each other, they can create a cycle whereby neither will be collected
as their mutual references never let their reference counts become zero.”

Write a sample program in a garbage collected language of your choice that creates a
cycle involving 3 garbage collectable objects.

[Solution]
Many programs are possible, including this example from a prior exam (if you’ve no-

ticed)

1 public class ObjectReachability {

2 static class Cycle {

3 Cycle next;

4 Cycle(Cycle next) {

5 this.next = next;

6 }

7 Cycle() {

8 this(null);

9 }

10 }

11 public static void main(String[] args) {

12 Cycle C = new Cycle();

13 C = new Cycle(C);

14 C = new Cycle(C);

15 C.next.next.next = C;

10

https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)#Reference_counting

16 C = null; // make objects in cycle collectable

17 }

18 }

2.3 Leak Or Not (5 pts)

Consider the following Java program:

1 import java.util.*;

2 public class LeakOrNot

3 {

4 private int n;

5 LeakOrNot(int n) {

6 this.n = n;

7 }

8

9 static void work() {

10 // allocate

11 for (int i = 0; i < 1000; i++) {

12 set.add(new LeakOrNot(i));

13 }

14

15 // actual work elided

16

17 // cleanup

18 for (int i = 0; i < 1000; i++)

19 set.remove(new LeakOrNot(i));

20 }

21

22 static HashSet<LeakOrNot> set = new HashSet<>();

23 }

If the function work() were to be invoked repeatedly, would this program constitute
a memory leak or not? Justify your answer. (You may use tools such as Eclipse Memory
Analyzer or VisualVM if necessary.)

[Solution]
This program constitutes a leak because the LeakOrNot objects that are added to

set in each call to work) are not, in fact, removed. The set.remove call is passed a
new object that is not equal to any existing object in the collection, as per definition of
Object.equals() and Object.hashCode().

You can verify this by either checking the return value of remove and/or looking at the
size of set after each call, or with a tool.

11

To make the code work in the intended way, the programmer would need to override
and implement Object.equals and Object.hashCode. Failing to do is a common reason
for memory leaks related to Java containers.

3 Virtual Memory (16 pts)

3.1 Files and Memory (8 pts)

Consider the following Unix program which unfortunately lacks documentation.

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <unistd.h>

4 #include <string.h>

5 #include <fcntl.h>

6 #include <sys/mman.h>

7 #include <sys/stat.h>

8

9 static char *

10 map_file(char *fname, off_t *size)

11 {

12 int fd = open(fname, O_RDONLY);

13 if (fd == -1) {

14 perror("open");

15 exit(EXIT_FAILURE);

16 }

17

18 struct stat info;

19 if (stat(fname, &info) == -1) {

20 perror("stat");

21 exit(EXIT_FAILURE);

22 }

23

24 char *p = mmap(NULL, *size = info.st_size,

25 PROT_READ, MAP_PRIVATE, fd, 0);

26 if (p == NULL) {

27 perror("mmap");

28 exit(EXIT_FAILURE);

29 }

30 return p;

31 }

12

32

33 int

34 main(int ac, char *av[])

35 {

36 if (ac != 3) {

37 fprintf(stderr, "Usage: %s file1 file2\n", av[0]);

38 return EXIT_FAILURE;

39 }

40

41 off_t asize, bsize;

42 char *a = map_file(av[1], &asize);

43 char *b = map_file(av[2], &bsize);

44 return (a && b && asize == bsize && memcmp(a, b, asize) == 0)

45 ? EXIT_SUCCESS : EXIT_FAILURE;

46 }

1. (3 pts) Come up with a suitable name for the program and write a brief, man-page
like description of what this program does. Be sure to include usage, a synopsis of
the intended function, and a description of the exit status conventions of this utility.

[Solution]

USAGE:

cmp file1 file2 - compare 2 files

DESCRIPTION:

This program accepts two command line arguments, file1 and file2 referring to 2
ordinary files. It will exit with 0 and indicate success if the two files are identical, it
will exit with a non-zero exit code otherwise.

2. (3 pts) Provide an example of how to use this utility on the command line.

[Solution]

$ cp cmp.c copy.c

$ if ./cmp copy.c cmp.c; then echo "identical"; else echo "different"; fi

identical

$ if ./cmp cmp.c cmp; then echo "identical"; else echo "different"; fi

different

or

13

$./cmp cmp.c cmp.c ; echo $?

0

$./cmp cmp.c cmp ; echo $?

1

Note that your example needed to include a way to examine the exit value (like if, or
$?, or a boolean operator such as &&) - otherwise, since the program doesn’t output
anything, the user wouldn’t be able to tell the result of the file comparison.

3. (2 pts) This program uses the open(2) system call, but not the close(2) system
call, and it uses mmap(2), but not munmap(2). Does the omission constitute a defect
in this program? Say why or why not.

[Solution] No, it does not constitute a problem. The program exits, and upon exit
the OS will close all file descriptors opened, and it will also destroy the process’s vir-
tual address space which includes unmapping any and all objects from it. There may
be disagreement on whether it’s good practice to close() and unmap() in programs
designed for single runs, but it’s clearly not a defect.

3.2 To Free or Not to Free (8 pts)

Dr. Back has been wondering if machines with relatively large memories, such as the node
of our rlogin cluster, still require the use of free(). After all they come with 384 GB of
memory so they should be able to accommodate a fair amount of waste. So he wrote the
following optimized implementation of free():

void free(void *ptr) { /* optimized out */ }

To test the implementation, he placed it into a shared library:

gcc -fPIC -Wall -c fastfree.c

gcc -shared -o libfastfree.so.1.0.1 fastfree.o

Then, to use the newly optimized free() with a program, this shared library will be
preloaded so that its implementation is used instead of the standard free() implementation
of the C library.

$ env LD_PRELOAD=./libfastfree.so.1.0.1 hostname

elm.rlogin

To benchmark his invention, he cloned the ‘wrk‘ benchmarking tool from github and
measured how long it would take to build it with the new implementation of free() and
how long without it. Building this tool involves repeated invocation of the gcc compiler,
the ld linker, and a number of smaller Unix utilities such as install(1).

First, he tested without it:

14

$ cd /tmp

$ git clone https://github.com/wg/wrk.git wrk-gback

$ cd wrk-gback/

$ /usr/bin/time make -j 40

which concluded with the following output:

168.56user 27.63system 0:07.89elapsed 2484%CPU (0avgtext+0avgdata 106056maxresident)k

0inputs+0outputs (0major+7984270minor)pagefaults 0swaps

Then, he tested with the shared library that “optimizes” free(), like so:

$ make clean

$ env LD_PRELOAD=/home/staff/gback/tmp/fastmalloc/libfastfree.so.1.0.1 \

/usr/bin/time make -j 40

which showed this result:

176.21user 69.88system 0:09.68elapsed 2540%CPU (0avgtext+0avgdata 609000maxresident)k

0inputs+0outputs (0major+24109164minor)pagefaults 0swaps

When he repeated the experiment a few times (running make clean in between runs),
it showed similar results.

Your Task: analyze these results and provide a hypothesis that could explain them.
Include in your analysis user time, system time, overall elapsed time, maxresident size and
the number of minor pagefaults.1

[Solution] A reasonable hypothesis is the following.
First, the interpretation of the values: user time is the time spent in user mode, ex-

ecuting application code (such as the compiler/linker, etc.), including time spent in the
user-level memory allocator (malloc/free). System time is time spent in kernel mode,
including the time spent in memory-related system calls such as sbrk()/mmap(), and in-
cluding the time spent servicing minor pagefaults. A minor pagefault occurs, among others,
every time a virtual address inside a page allocated via sbrk()/mmap() is first accessed.
The “max rss” size is the amount of physical memory that was allocated (because pages
were touched) for the child or descendant for whom this number was highest. Here, make
ran with 40 concurrent processes (-j 40) so this number, multiplied by 40, provides a good
estimated upper bound on the maximum physical memory consumption of this workload.

1Note that the number of major pagefaults was 0 since Dr. Back worked inside the /tmp directory whose
content is backed by RAM. If you experiment, please don’t forget that /tmp is a shared resource. Delete
any directories your create.

15

By omitting free(), allocated objects will never be returned to the heap. As a result, the
user-level memory allocator will need to grow the heap by requesting more virtual addresses
from the underlying OS (via sbrk() or mmap()) - just like in your p3 implementation you
needed to call mem sbrk() to expand the heap when there was nothing on the free lists.
In a fully demand paged system like Linux, the OS does not allocate physical memory at
this point. When the pages containing those additional virtual addresses are eventually
accessed, minor pagefaults result, which explains the increase in the number of minor
pagefaults and it explains the increase in the amount of resident (physical) memory used
for the programs were free() was skipped. Note that because these machines have plenty of
physical memory, the system never entered a state where it was unable to satisfy a request
for physical memory when handling a page fault - the workload completed as normal.
The minor page fault handler would simply request a free physical page from the kernel’s
memory allocator (a fast buddy allocator) and create a mapping to it.

The larger amount of time spent inside the kernel (system time) could be explained by
at least 2 factors: (a) the time spent to handle these additional page faults, although this
is unlikely to account for most of the increase, and (b) the additional time spent in the
additional calls to sbrk() and mmap(), and (c) the increased amount of time spent when
exiting each process (when the now larger virtual address space needs to be torn down and
any physical memory that was mapped to it needs to be deallocated and returned to the
physical memory allocator.)

Explaining the increase in user time is not as obvious: after all, the user programs
executed by this workload do less than before, at least they save the time they would have
otherwise spent in free(). A possible explanation may be an increase in cache and/or
TLB misses due to the larger virtual memory footprint (along with an increase in time
spent in the user portions of the code growing the heap, excluding the sbrk() and mmap()
system calls).

While these are reasonable hypotheses that could explain the values observed, as in all of
science, and in systems research in particular, we need to stress that those are hypotheses,
not facts. A careful analysis and more extensive experimentation would be required to
validate them, and it is not uncommon to discover other secondary or hidden factors that
sometimes influence performance in unforeseen ways.

Incorrect Observations. There are also a number of incorrect observations some stu-
dents made. First of, there is no “thrashing” with this workload. The total amount of
physical memory used by the entire workload was no more than about 40× 600MB, which
is about 6.2% of the available memory in our rlogin nodes. There was never any risk of
running out of physical memory (which would have necessitated swapping). This was also
evident by the lack of major pagefaults which otherwise would be reported (in fact, there
weren’t major pagefaults due to any process-related activity, including the paging in of the
executables).

Second, this workload did not “leak” any physical memory. There was a leaking of

16

allocated objects inside the virtual address space while each of the processes were running,
requiring the OS to keep around virtual address allocations for the allocated but not freed
objects, but at the end of the workload all processes had terminated, the OS had cleaned
up after them, and the system had the same amount of usable physical memory as before.
There were absolutely no persistent effects.

Third, be careful with the argument that malloc() will take longer if there are no freed
objects in the heap because it spends “more time searching for objects.” That’s unlikely
to be true: malloc will likely immediately tell that its free lists are empty and move to
expand the heap. So to the extent that spending more time in malloc() contributes to the
increase in user time, it’s unlikely due to time being spent in the free list data structure
lookup/find routines.

Fourth, I looked in your explanation for a clear distinction between the effects of man-
aging memory blocks referring to virtual address ranges (as is done by the user-level mal-
loc/free allocator) and the effects on virtual memory (where the OS allocates physical
memory to service page faults). Notably, inside the OS, physical memory pages are also
managed by an allocator, and this allocator needs to allocate memory on a page fault and
return it to the free memory pool when a process exits, as discussed above.

Fifth, I read in a number of answers the formulation that a “minor pagefault” occurs
when a “page is in memory” but not “allocated to the process.” This definition appears
to come from some online source, but it does not apply here. All additional minor page
faults in this scenario are for anonymous memory (those are pages that the OS promised
and will provide zero-filled pages on access which it must first allocate). In other words,
there is no page that is already in memory. (This is unlike minor page faults that occur
when accessing say the text segment of a shared library that is shared between different
processes, or a process’s text segment itself.)

4 Protection/Security (18 pts)

1 #include <stdio.h>

2 #include <sys/types.h>

3 #include <unistd.h>

4 #include <sys/wait.h>

5 #include <sys/mman.h>

6 #include <string.h>

7

8 #define MAX_SIZE sysconf(_SC_PAGE_SIZE)

9

10 char *processSpecificMessage = "Your message here";

11

12 int main(int argc, char **argv) {

17

13 // Get a page-aligned chunk of memory to store secrets

14 char * secretStash = (char *)mmap(NULL, MAX_SIZE, PROT_READ | PROT_WRITE,

15 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

16 if(secretStash == MAP_FAILED) {

17 perror("ERROR: mmap failed: ");

18 return 1;

19 }

20

21 // Write my secrets

22 strncpy(secretStash, "SECRET MESSAGE", 15);

23 printf("PARENT: %s\n", secretStash);

24

25 // Hide the secret from my children and from core dump

26

27 // Prevent secret from going to swap

28

29 // Create children

30 for(int i = 1; i < argc; ++i) {

31 processSpecificMessage = argv[i];

32 pid_t cpid = fork();

33 if(!cpid) {

34 printf("CHILD %d: %s\n", i, secretStash);

35 printf("CHILD %d: %s\n", i, processSpecificMessage);

36 return 0;

37 }

38 wait(NULL);

39 }

40

41 // Prove parent still knows secret

42 printf("PARENT: %s\n", secretStash);

43 }

Analyze the program above, refer to the man page for madvise, and answer the following
questions:

1. (1 pts) Without modification, do children know what is in their parent’s secretStash
at the time of their creation and why?

[Solution] Yes, because children get a copy of their parent’s memory at the time of
their creation.

2. (1 pts) When, if ever, do children become unaware of what is in their parent’s
secretStash?

18

[Solution] Children only get a copy (see process isolation) at the time of creation,
thus they cannot see their parent’s updates to memory (see copy-on-write).

3. (2 pts) What statement would you add to line 26 to prevent children from knowing
what is in their parent’s secretStash?

[Solution] See the solution code below (MADV WIPEONFORK).

4. (2 pts) How can the child cause the parent’s secretStash to be divulged through a
core dump?

[Solution] The child could send SIGSEGV signal to the parent, causing it to create a
core dump.

5. (2 pts) What statement would you add on line 26 to prevent this (ignore error check-
ing)?

[Solution] See the solution code below (MADV DONTDUMP).

6. (2 pts) How can the child cause the parent’s secretStash to be divulged through a
swap to disk?

[Solution] Abstractly, swap occurs when there is insufficient physical memory to
meet the demands of all processes on a system (i.e., the sum of their occupied virtual
memory is greater than the available physical memory). For example, the child could
malloc() and touch a large amount of memory, causing the parent’s pages to be
swapped-out to disk. See how this was used as part of a rowhammer attack in “Flip
Feng Shui: Hammering a Needle in the Software Stack”.

7. (2 pts) What statement would you add on line 28 to prevent this (ignore error check-
ing)?

[Solution] See the solution code below (mlock(...)).

8. (2 pts) Assuming all of the above modifications are in place, if the parent puts a
second string midway in secretStash, i.e., strcpy(secretStash + (MAX SIZE >>

1), "Hello"), what are the contents of that portion of secretStash from the child
process’s perspective and why?

[Solution] Since secretStash is exactly one page in size and madvise works at page
granularity, the entire page—as seen by the child—is cleared, i.e., set to 0, during
creation.

9. (2 pts) Describe how you think the operating system implements the functionality
used in Question 3 to ensure that children cannot see the secret message in their
address space.

19

[Solution] Instead of copy on write, during child creation, the OS gives child pro-
cesses fresh pages in place of the protected pages. Given that the MMU does not
have specific flags for this, the OS must include flags to track these madvise features
in each process’s data structure.

10. (2 pts) Given that parents and children can run in any order, is there a risk that
some children will have the same ID or message and why/why not?

[Solution] No, because the data is not shared, only “copied” during child creation.

1 #include <stdio.h>

2 #include <sys/types.h>

3 #include <unistd.h>

4 #include <sys/wait.h>

5 #include <sys/mman.h>

6 #include <string.h>

7

8 #define MAX_SIZE sysconf(_SC_PAGE_SIZE)

9

10 char *processSpecificMessage = "Your message here";

11

12 int main(int argc, char **argv) {

13 // Get a page-aligned chunk of memory to store secrets

14 char * secretStash = (char *)mmap(NULL, MAX_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE

15 | MAP_ANONYMOUS, -1, 0);

16 if(secretStash == MAP_FAILED) {

17 perror("ERROR: mmap failed: ");

18 return 1;

19 }

20

21 // Write my secrets

22 strncpy(secretStash, "SECRET MESSAGE", 15);

23 printf("PARENT: %s\n", secretStash);

24

25 // Hide the secret from my children and from core dump

26 int ret = madvise(secretStash, MAX_SIZE, MADV_WIPEONFORK | MADV_DONTDUMP);

27 if(ret) {

28 perror("ERROR: madvise: ");

29 return 1;

30 }

31

32 // Prevent secret from going to swap

20

33 if(mlock(secretStash, MAX_SIZE)) {

34 perror("mlock: ");

35 return 2;

36 }

37

38 // Create children

39 for(int i = 1; i < argc; ++i) {

40 processSpecificMessage = argv[i];

41 pid_t cpid = fork();

42 if(!cpid) {

43 printf("CHILD %d: %s\n", i, secretStash);

44 printf("CHILD %d: %s\n", i, processSpecificMessage);

45 return 0;

46 }

47 wait(NULL);

48 }

49

50 // Prove parent still knows secret

51 printf("PARENT: %s\n", secretStash);

52 }

5 Dynamic Memory Management (20 pts)

8 0x00001230 0x00001000 8

8 0x00001220 0x00001230 8

8 0x00001004 0x00001210 8

8 0x00001210 0x00001200 8

0x00001200

0x00001210

0x00001220

0x00001230

0x00001240

size next prev size

Free list tail 0x00001220

Free list head 0x00001200

Memory

Format

…

0x00001000

0x00001004
…

4 4 4 4
num bytes

Figure 2: Free list in memory. Assume the free list management policies are Best-fit for
allocation, freed blocks are added to the front of the list, and coalesced when needed to
service a malloc(). You may ignore splitting.

21

Consider the following code snippet:

1 // Question 1

2 void * a = malloc(8);

3 void * b = malloc(8);

4 void * c = malloc(8);

5

6 // Question 3

7 free(c);

8 free(a);

9 free(b);

10

11 // Question 5

12 a = malloc(15);

13

14 // Question 6

15 free(a);

16

17 // Question 7

18 *((char *)b) = "DEADBEEF";

19

20 // Question 8

21 a = malloc(8);

22

23 // Question 9

24 uint32_t x = *((uint32_t *)a);

1. (2 pts) Given the free list pictured in Figure 2, list the values of variables a, b, and
c after executing up to line 5?

[Solution] a = 0x00001204, b = 0x00001234, and c = 0x00001214. Keep in mind
that the start of a free list entry is size metadata, which is 4 bytes.

2. (1 pts) What does the free list look like at line 5? Report your answer in the format:
head address, tail address(, size, next, prev, size)*.2 Please use hexadecimal notation
for each value and you may remove leading zeros.

[Solution] 0x1220, 0x1220, 0x8, 0x1004, 0x1000, 0x8. Note that it is also okay to
surround the entry list with parenthesis.

3. (1 pts) What does the free list look like after executing up to line 10 (use the same
format as the previous question)?

2(...)* means that the sequence in the parenthesis can appear zero or more times

22

[Solution] 0x1230, 0x1220, 0x8, 0x1200, 0x1000, 0x8, 0x8, 0x1210, 0x1230, 0x8, 0x8,
0x1220, 0x1200, 0x8, 0x8, 0x1004, 0x1210, 0x8. Note that the entries may appear in
memory order or in list order, and may or may not have parenthesis.

4. (2 pts) In general, does the order that free()’s occur in matter? Why?

[Solution] Yes, because, depending on the allocator policies implemented, it influ-
ences the run-time performance of the allocator.

5. (2 pts) What address is returned by the call to malloc() on line 12 and what is the
state of the free list after this call?

[Solution] Servicing this request requires coalescing. If you assume forward-only
coalescing: a = 0x1204 and free list = 0x1230, 0x1220, 0x8, 0x1004, 0x1230, 0x8,
0x8, 0x1220, 0x1000, 0x8. If you assume backward coalescing: a= 0x1224 and free
list = 0x1200, 0x1210, 0x8, 0x1210, 0x1000, 0x8, 0x8, 0x1004, 0x1200, 0x8.

6. (1 pts) What does the free list look like after the call to free() on line 15?

[Solution] Assuming forward coalescing in previous response: 0x1200, 0x1220, 0x18,
0x1230, 0x1000, 0x18, 0x8, 0x1004, 0x1230, 0x8, 0x8, 0x1220, 0x1200, 0x8. Assuming
backward coalescing in previous response: 0x1220, 0x1210, 0x8, 0x1210, 0x1220, 0x8,
0x8, 0x1004, 0x1200, 0x8, 0x18, 0x1200, 0x1000, 0x18.

7. (2 pts) What are the contents of the free list after executing the assignment statement
on line 18?

[Solution] Assuming forward coalescing in previous response: 0x1200, 0x1220, 0x18,
0x1230, 0x1000, 0x18, 0x8, 0x1004, 0x1230, 0x8, 0x8, 0x44454144, 0x42454546, 0x8.
Assuming backward coalescing in previous response: 0x1220, 0x1210, 0x8, 0x1210,
0x1220, 0x8, 0x8, 0x1004, 0x1200, 0x8, 0x18, 0x1200, 0x42454546, 0x18.

8. (2 pts) What is the value of variable a after executing line 21? Why?

[Solution] Assuming forward coalescing in previous response: 0x1234. Assuming
backward coalescing in previous response: 0x1204.

9. (2 pts) If we now execute up through line 24, what is the value of x (unknown is a
viable answer)?

[Solution] Assuming forward coalescing in previous response: 0x44454144. Assum-
ing backward coalescing in previous response: 0x00001210.

10. (3 pts) Put together everything you know to complete the attack below (the details
do not need to be exact for full credit): given the password checking code below,
how would you cause the program to execute giveStudentA(), even though the
password does not match? You may add exactly one statement to line 11 to finish

23

the attack. This statement is limited to using malloc(), free(), variable a (as
an assignment target, i.e., *a = ...), and you may use passwordMatches on the
right-hand side of the statement. The target of the attack is the simple free list
implementation developed in the earlier questions. As with the previous code snippet,
memory addresses are 32-bits (hence using the uint32 t data type).

1 uint32_t passwordMatches = 0; // non-0 when password is correct

2

3 uint32_t * a;

4

5 // Start with empty free list

6

7 // Put something on the free list

8 a = (uint32_t *)malloc(8);

9 free(a);

10

11 // YOUR one statement of code here - copy to allocator.txt

12

13 a = (uint32_t *)malloc(8);

14

15 // Get a pointer to passwordMatches

16 a = (uint32_t *)malloc(8);

17

18 // Change value of passwordMatches

19 *a = 1;

20

21 if(passwordMatches) {

22 giveStudentA();

23 }

[Solution] This is an example of a free list poisoning attack. The key idea is to trick
the allocator into giving you access to memory that you wouldn’t normally have access
to; in this case, the result of the password check stored in passwordMatches. You do
this by poisoning the list pointers in a previously-freed pointer with the address of
the victim variable. While the exact line is allocator dependent, it follows the form:

*a = (uint32 t)(&passwordMatches - SIZE BYTES);.

11. (2 pts) How would you, as a dynamic memory allocator designer, protect against this
attack?

[Solution] There are a variety of acceptable (as answers) ways to do this that vary
in complexity and run-time overhead. One approach is heap hardening as used in

24

Linux. In heap hardening, the pointers used by free list entries are masked with
unpredictable values at run time.

25

	Networking (28 pts)
	Know Your Internet (14 pts)
	Mixing Processes and Sockets (14 pts)

	Automatic Memory Management (18 pts)
	Object Reachability Graphs (8 pts)
	Cycles (5 pts)
	Leak Or Not (5 pts)

	Virtual Memory (16 pts)
	Files and Memory (8 pts)
	To Free or Not to Free (8 pts)

	Protection/Security (18 pts)
	Dynamic Memory Management (20 pts)

