
CS 3214 Spring 2010 Final Exam Solutions

1/14

CS 3214 Final Exam Solutions

54 students took the final exam. The table below shows who graded which
problem and statistics about it. The exams are kept by your section’s instructor.
Arrange by email if you wish to look at your exam.

 P1 P2 P3 P4 P5 P6 Total
Min 0 3 4 1 3 0 26
Max 12 17 26 14 15 16 85
Possible 12 18 24 14 16 16 100
Avg 6.5 9.4 18.3 7.7 8.7 7.4 58.6
StDev 3.5 3.8 5.6 3.3 2.8 4.3 15.8
Median 7 9 19.5 7.5 9 6 60
Grader Godmar Godmar Peter Scott Ali Ali

CS 3214 Spring 2010 Final Exam Solutions

2/14

1. Linking and Loading (12 pts)
The following questions are related to linking and loading in a C/Unix
environment.

a) (4 pts) A coding style rule that is used in many C-based projects is that
variables that are used only within one compilation unit be declared static.
Sketch briefly how you could create a script as part of the build process
that would check if programmers followed this rule!

Use nm or a similar tool and verify that for every defined global symbol
(recognizable with a capital letter such as ‘T’, ‘C’, or ‘D’ in nm), there exists at
least one undefined (‘U’) reference in another .o file.

Some answers suggested a source code analysis approach by looking for
‘extern’ declarations. While possible, this is more difficult because simply
declaring a variable or function extern does not produce an undefined reference
unless the variable or function is actually used.

A common mistake was to propose an algorithm that would check that static variables with the
same name aren’t used outside the current compilation unit. This is wrong: static variables are
local to a compilation unit, so using a static variable with the same name in different files is entirely
ok (and occurs quite often).

b) (4 pts) Consider the following two .c files:

// inck.c
extern int k;

void inc_k()
{
 k++;
}

// main.c
extern void inc_k();

int main() {

 inc_k();
 return 0;
}

What error message would the command gcc inck.c main.c -o main
produce if one attempted to compile and link this program?

$ gcc -Wall inck.c main.c -o main
/tmp/cc4HL3gU.o: In function `inc_k':
inck.c:(.text+0x4): undefined reference to `k'
inck.c:(.text+0xc): undefined reference to `k'
collect2: ld returned 1 exit status

The symbol ‘k’ is referenced in inck.o, but never defined. ‘extern’ declares, but
does not define a symbol.

CS 3214 Spring 2010 Final Exam Solutions

3/14

c) (4 pts) Address space randomization is a defensive technique used to

increase an attacker’s difficulty of succeeding with overflow attacks that
require a priori knowledge of where a program’s data is located in its
virtual address space. For instance, the location of the stack and the start
of the heap are randomized on modern systems, so that they vary
between different runs of a program. Could the location of global variables
be similarly randomized? State your assumptions if necessary!

No or yes, depending on your assumptions.

Assuming the way executables are customarily built, the answer is no because
the linker determines the location of all global variables at link time, then places
the computed addresses directly into the executable.

This could be avoided by building position-independent executables that use
indirection via a global offset table for each access to global variables, just like
shared libraries do. Note that shared libraries can access global variables used in
their implementation, even though they may be located at different virtual
addresses in the processes that use this shared library.

Some answers proposed randomization as part of the linking process, not the loading process. In
this case, the locations of global variables would be the same from run to run, although they would
vary between systems (and an attacker may not know the location on the system they are
attacking.) This approach means that custom binaries need to be built for each system. This
approach has so far been used only in experimental settings.

2. Running Programs On Unix (18 pts)
The following questions relate to how programs execute on Unix-like operating
systems.

a) (4 pts) Consider the following program contained in a file prog1.c

// prog1.c
#include <stdio.h>
#include <unistd.h>

int
main()
{
 printf("one\n");
 write(STDOUT_FILENO, "two\n", 4);
 return 0;
}

When run on the command line, this program outputs:

$./prog1
one

CS 3214 Spring 2010 Final Exam Solutions

4/14

two

However, if the output of the program is first piped through the ‘cat’
program, the following is displayed on the terminal:

$./prog1 | cat
two
one

 Explain what could cause this behavior!

printf() uses buffered standard I/O, and write() is a system call that immediately
invokes the kernel to output the data.

The stdio FILE buffer is flushed when a newline \n is encountered, but only if the
FILE is connected to a terminal. If stdout is connected to a pipe, as in the second
run, flushing is delayed until the program exits.

Common mistakes were to assume that printf() and write() go to different file descriptors, or that
printf() goes directly to the terminal, or that standard I/O uses some kind of asynchronous buffering
where flushing is done concurrently by an independent thread. Neither is the case. printf() merely
provides buffering for writes() to file descriptor 1 – flushing the buffer is eventually accomplished by
issuing a write(1, …) system call. The difference is the flushing policy – standard I/O tries to avoid
flushing when it can, and attaching the file descriptor to a pipe means no flushing on \n.
We awarded 3 out of 4 points if you recognized that the issue was related to flushing.

b) (4 pts) When a Unix process exits, the OS will automatically reclaim some
of the system resources it was using. Give one example of a resource that
the OS will reclaim, and one example of a resource that the programmer
must reclaim before exiting!

i. (2 pts) A resource the programmer does not need to worry about
when a program exits:

• Open file descriptors for files, pipes, sockets, etc. – these are all closed by

the OS on exit() or termination, as if the programmer had called close().
• The entire virtual address space, including the runtime stacks of all

threads, dynamically allocated heap or other anonymous memory,
mmap()’d memory segments and the program code and global variables.

• Exit statuses of unwaited-for children (e.g., zombies) – these are reaped
automatically if their parent exits.

• Any threads started by this process are terminated automatically when a
process exits.

ii. (2 pts) A resource the programmer needs to worry about:

CS 3214 Spring 2010 Final Exam Solutions

5/14

• Named resources, including (temporary or not) files, named pipes, named
shared memory. These persist even after the process creating them has
terminated. An exemption are temporary files that have been unlinked
right after creation, as per the pattern discussed in class.

• Still running child processes (orphans: with respect to their resource
consumption, not with respect to their eventual reaping). The programmer
needs to decide if these processes should be terminated or not,
depending on the desired application semantics.

The key message is that the OS attempts to reclaim as many resources as it can
so that the fate of an individual process does not affect the stability of the
remaining system. It’s one of the fundamental services an OS provides.

A very common mistake was to say that a programmer needs to worry about dynamically allocated
memory when a program exits. If this were the case, a computer would become quickly unusable
from running programs, as most programs do not ensure that dynamically allocated memory is
deallocated before exiting. (And, it would mean that the system would leak memory whenever your
program is terminated by a signal.)

Perhaps valgrind was more confusing than helpful here: valgrind reports leaked memory at the end
of each run. The intention here is to help programmers create applications that don’t leak memory
in the long run. For instance, if your actual program does while (1) doit();, then letting
valgrind examine leaks in int main() { doit(); } will help you avoid leaks in the actual
deployment situation.

A second mistake was to say that you have to worry about zombies when exiting. This is not so:
you have to worry about zombies (unreaped children) while you’re running, not after you’re dead.

c) (10 pts) Consider the following interaction of a user running bash in a
terminal. In the table below, list the following events: (1) process-related
system calls (fork, exec, exit, kill, wait/waitpid) and (2) file descriptor
related calls (open, close, pipe, dup, dup2)

User input shown in
bold, terminal output
in italics

Shell Process Child Process1 Child Process2

$ cat < main.c |
grep main
int main() {
$

pipe([RD, WR])

 fork()
 close(WR) close(RD)
 fork() dup2(WR,1)
 close(RD) close(WR) dup2(RD, 0)
 open(“main.c”)

= FD
close(RD)

 dup2(FD, 0) exec(“grep”)

CS 3214 Spring 2010 Final Exam Solutions

6/14

 close(FD) exit()
 exec(“cat”)
 exit()
 waitpid(-1)
 waitpid(-1)

Use different rows to express if events are synchronized, i.e., if it is
guaranteed that event n occurs after event m, then event n should be listed in
a row below event m. Note that not all rows/columns will have entries.

The ‘close()’ calls are shown for completeness, but our grading focused on the
remaining calls. Also note that waitpid() is synchronized with exit() in the sense
waitpid() will not return until after the process has exited – it’s possible for the
parent shell to reach waitpid() before the child processes completed their
execution (and it typically does.)

Note that you cannot do dup2() in the shell process because that would affect the
shell’s stdin/stdout file descriptor.

3. Multi-Threading (24 pts)

a) (4 pts) A number of students used the following approach when
implementing the thread pool in the accompanying exercise.

thread_pool_get(threadpool *p, future **t)
{
 lock(p->lock);
 while (threadpool_empty(p) && !threadpool_shutdown(p))
 cond_wait(p->lock, p->cond);
 // …
 *t = threadpool_pulltask(p);
 unlock(p->lock);
}

threadpool_submit(threadpool *p, future *t)
{
 lock(p->lock);
 threadpool_add(t);
 unlock(p->lock);
 cond_signal(p->cond);
}

Could this implementation lead to lost wake-ups?

No. With the exception of issuing cond_signal() outside the monitor lock, this
code follows exactly the established idiom.

Every submission of a future is eventually followed by a signal, and every worker
thread will either see the future in the queue when acquiring the monitor, or the
signal will arrive after the thread has added itself to the monitor’s condition

CS 3214 Spring 2010 Final Exam Solutions

7/14

variable queue. Note that it may happen that a thread wakes up only to see that
another worker thread “stole” the added future from it. That’s okay, and the code
is designed for it. The worker thread will simply go back to wait, and the
enqueued future was processed.

This implementation has a minor efficiency problem, however – by delaying the
call to cond_signal to outside the monitor, worker threads may have to wait
longer to be woken up than if the call occurred inside the monitor. More
specifically, each worker thread’s progress depends on how the scheduler treats
the submitting thread between the unlock() and the cond_signal() call. This is
generally undesirable. The recommended style is to call cond_signal inside the
monitor (in Java’s adaption of monitors, this behavior is enforced via a
‘IllegalMonitorStateException’ thrown if notify() is called on an unsynchronized
object).

One section received a broken version of this question, which is why we didn’t grade it. Everybody
was awarded 4 points for this question. Kudos to those who noticed it.

b) (3 pts) Some students implemented mutual exclusion in program 5 using

the following sequence:

void doit(int fd)
{
 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
 pthread_mutex_lock(&lock);
 ...
 // access some shared resource
 pthread_mutex_unlock(&lock);
}

Explain why this is wrong!

It creates a local, non-shared mutex for each thread. Only this thread will acquire
this mutex, and other threads will acquire theirs, leading to loss of mutual
exclusion. Using locks for mutual exclusion requires that all threads aiming to
access a shared resource contend for the same mutex, which only one thread
will be able to lock at a time.

c) (9 pts) In the next 2 subparts of this question, we will explore the concept

of rendezvous, which is a point that two threads have to reach before any
of them can proceed further. Consider the following implementations of
rendezvous using two semaphores.

(V1) (V2) (V3)
sem_t aHere;
sem_t bHere;

// initial value is zero
sem_init(&aHere, 0, 0);

sem_t aHere;
sem_t bHere;

// initial value is zero
sem_init(&aHere, 0, 0);

sem_t aHere;
sem_t bHere;

// initial value is zero
sem_init(&aHere, 0, 0);

CS 3214 Spring 2010 Final Exam Solutions

8/14

sem_init(&bHere, 0, 0);

thread_A_code
{
…
sem_wait(&bHere);
sem_post(&aHere);
…
}

thread_B_code
{
…
sem_wait(&aHere);
sem_post(&bHere);
…
}

sem_init(&bHere, 0, 0);

thread_A_code
{
…
sem_wait(&bHere);
sem_post(&aHere);
…
}

thread_B_code
{
…
sem_post(&bHere);
sem_wait(&aHere);
…
}

sem_init(&bHere, 0, 0);

thread_A_code
{
…
sem_post(&aHere);
sem_wait(&bHere);
…
}

thread_B_code
{
…
sem_post(&bHere);
sem_wait(&aHere);
…
}

i. (3 pts) Discuss the correctness and expected performance of variant

V1. Identify any problems!

V1 leads to deterministic deadlock. Thread A waits for semaphore bHere to be
signaled before signaling aHere, but this will never happen because thread B
waits for aHere to be signaled before signaling bHere.

ii. (3 pts) Discuss the correctness and expected performance of variant
V2. Identify any problems!

V2 is correct in that it guarantees rendezvous. Thread A will block on bHere until
thread B signals it. Subsequently, thread A will signal aHere, allowing thread B to
progress past its sem_wait call.
This implementation has a performance drawback, however. If thread A arrives
at the rendezvous point first, it will block in the sem_wait call, but then thread B
will very likely also block because it must wait until thread A was resumed from
its sem_wait() and issued the sem_post() call. Conversely, if thread B arrives
first, thread A will not have to block.

iii. (3 pts) Complete V3 so that the problems identified in i) and ii) no
longer occur! (Fill in your solution above).

Ordering the sem_post call before the sem_wait call removes this asymmetry. It
ensures that the second thread to arrive at the rendezvous will not block,
independent of whether thread A or B arrives first.

d) (8 pts) The generalization of rendezvous to N threads is called a barrier.
Consider the following implementation of a barrier:

int count = number_of_threads;
pthread_mutex_t barrier_mutex = PTHREAD_MUTEX_INITIALIZER;

CS 3214 Spring 2010 Final Exam Solutions

9/14

sem_t barrier_signal;

sem_init(&barrier_signal, 0, 0); // init to 0

void barrier() // barrier function is called by each thread
{
 pthread_mutex_lock(&barrier_mutex);
 count--;
 pthread_mutex_unlock(&barrier_mutex);

 if (count == 0)
 sem_post(&barrier_signal);

 sem_wait(&barrier_signal);
 sem_post(&barrier_signal);
}

i. (4 pts) Suppose N threads are running on a single single-core CPU

under the regime of a non-preemptive scheduler (so that context
switches can occur only at synchronization points, such as
pthread_mutex_lock and sem_wait()). Provide the sequence of events
when the 1st, 2nd, etc. up to the nth thread are calling this function!

Each arriving thread decrements the count by one, and all but the last will end up
waiting at the barrier_signal semaphore. When the last thread arrives at the
barrier, it will post the semaphore, allowing one blocked thread to move past it.
This thread will in turn post the semaphore again, allowing the next thread to
move past it, and so on until all threads have moved past the ‘barrier’ function
after the arrival of the last thread.

You will note that this (incomplete) barrier implementation cannot be used more
than once, because the final value of the semaphore will be 1 after each thread
called barrier() once.

2 pts of extra credit if you realized the point made in the last paragraph.

ii. (4 pts) When run on a contemporary system with multiple cores and/or

CPUs running under the regime of a preemptive scheduler, this code
contains a race condition. Explain why the code will not work correctly
under these assumptions, and suggest a fix for the algorithm!

There is a race condition in the test count == 0, which is done outside the
barrier_mutex. It could be fixed by placing the test inside the lock/unlock bracket.

That said, the race condition doesn’t affect the correctness of barrier – it simply
means that the final value of the semaphore is undefined (could be larger than
one if multiple threads see count to be 0 when they test it). This will make the
problem of not being able to use the barrier multiple times harder to repair.

CS 3214 Spring 2010 Final Exam Solutions

10/14

As an aside, real barriers are not implemented like this; this example serves only
for illustrative purposes.

4. Dynamic Storage Allocation (14 pts)

a) (4 pts) The performance of dynamic memory allocators is a trade-off
between peak utilization and throughput. High throughput often implies
low utilization, and higher utilization reduces throughput. Name 2
allocation strategies that represent the extreme points of this spectrum!

i. (2 pts) High throughput, low utilization:

The naïve “bump-a-pointer, never free” allocator provided in the sample code for
program 4 has high throughput and very low utilization.

ii. (2 pts) Low throughput, high utilization:

Any type of best-fit scheme using a single list would have these properties.

b) (4 pts) When debugging C code, some of you saw messages during calls
to free() such as this one:

*** glibc detected ***
/home/ugrads/ugrads1/g/gpb/cs3214/Project5/sysstatwebservice/statd:
double free or corruption (!prev): 0x09b96e50 ***

Based on your knowledge of dynamic memory allocators, explain how
GNU libc’s memory allocator would be able to implement such
diagnostics!

GNU libc’s malloc uses a variant of Knuth’s boundary tag method to record a
block’s status. The bits contained in those tags allow GNU’s malloc to implement
a number of lightweight consistency checks. For instance, it can check that a
block’s ‘in-use’ bit is actually set to 1 when the user issues a free() request for
this block.

This concrete error message, btw, occurs when the next block’s ‘previous-in-use’
bit does not indicate that the previous block is in use at the time the user
attempts to free() it. GNU malloc optimizes away the footer boundary tag for used
blocks by stealing one bit from the next block’s header. In practice, a likely
reason for this error message is overrunning the allocated space (and thus
corrupting the next block’s header.)

c) (6 pts) The valgrind analysis tool, in addition to detecting common memory
corruption errors, analyzes the C heap for unreachable objects. These are
objects to which no pointers are found anywhere in the heap. For
instance, you may see this output before a program exits.

CS 3214 Spring 2010 Final Exam Solutions

11/14

==23082== LEAK SUMMARY:
==23082== definitely lost: 1248 bytes in 2 blocks.
==23082== possibly lost: 680 bytes in 5 blocks.
==23082== still reachable: 172 bytes in 3 blocks.
==23082== suppressed: 0 bytes in 0 blocks.
==23082== Reachable blocks (those to which a pointer was found) are not
shown.

i. (2 pts) Why can’t the same method be applied to finding memory

leaks in Java programs?

Because Java’s garbage collector reclaims unreachable objects to which no
pointers exist.

ii. (4 pts) Sketch how you might be able to find memory leaks in Java
programs dynamically (e.g., by monitoring a program’s activity
while it runs).

Memory leaks in Java occur if objects are still reachable, but in fact won’t be
accessed in the future. This is a crucial difference from memory leaks in C. A
dynamic tool could find leak candidates by observing how long ago an object was
last accessed by the program. (This is in fact how some tools work.) This will not
prove that an object is leaked, but alert the programmer to the fact that reachable
objects have not been accessed for a long time.

5. TCP/IP Networking (16 pts)
a) (5 pts) Consider the following flawed attempt at implementing the sysstatd

web service in Project 5:

void tcp_server_loop()
{
 int socket;
 struct sockaddr_in serveraddr, clientaddr;
 socklen_t clientaddrlen = sizeof(clientaddr);

 if ((socket = socket(AF_INET, SOCK_DGRAM, IPPROTO_TCP)) < 0)
 return -1;

 bzero((char *) &serveraddr, sizeof(serveraddr));
 serveraddr.sin_family = AF_INET;
 serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
 serveraddr.sin_port = htons((unsigned short)port);
 if (bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)
 return -1;

 while (accept(s, &clientaddr, &clientaddrlen) != -1) {
 char buf[1024], *url;

 int rc = read(s, buf, 1024); // read HTTP request

CS 3214 Spring 2010 Final Exam Solutions

12/14

 parse_http_request(buf, &url); // parse it
 if (strcmp(url, “/loadavg”) == 0) {
 char reply[1024];
 char *jsonMsg = read_json(“/loadavg”);
 snprintf(reply, sizeof reply,
 “Content-Length: %s\r\n”, strlen(jsonMsg));
 write(s, reply, strlen(reply));
 write(s, jsonMsg, strlen(jsonMsg));
 } else {
 send_404(s);
 }
 }
 }

This code contains multiple errors related to the use of TCP sockets and to
the implementation of the HTTP protocol. Identify 5 such mistakes! (Ignore
potential memory management problems such as limited buffer sizes or lack
of memory deallocation. Assume that code not shown is implemented
correctly!)

The code contains at least the following mistakes:

TCP related:

1. A TCP socket is created by passing SOCK_STREAM, not
SOCK_DGRAM.

2. There is no call to listen()
3. The socket returned by accept() is ignored; the listening socket cannot be

used to communicate with the client
4. Related, the accepted connection is not independently closed
5. Short reads() are not handled when reading the HTTP request

HTTP related

1. Code does not send a status line (e.g. HTTP/1.1 200 Ok)
2. Code does not end HTTP header from \r\n

We also accepted that ‘listenfd’ and ‘s’ were not defined/initialized, which was
due to a typo. ‘socket’, ‘s’, and ‘listenfd’ were meant to refer to the same variable.

We did not accept errors such as “void function returns -1” because they are not TCP- or HTTP-
related.

b) (4 pts) The widely used Apache webserver can be configured to use
different “Multi-Processing Modules” (MPM) that allow an administrator to
choose different server models. The default configuration is ‘prefork,’
which implements a non-threaded, pre-forking web server. According to
the Apache documentation, in pre-fork mode, “a single control process is
responsible for launching child processes which listen for connections and
serve them when they arrive. Apache always tries to maintain
several spare or idle server processes, which stand ready to serve

CS 3214 Spring 2010 Final Exam Solutions

13/14

incoming requests.”
Considering the many possible uses of web servers, give 2 reasons for
why the Apache developer might have chosen this model as their default
configuration!

Using a multiple process model provides the highest degree of isolation between
requests, so that any faults occurring during the handling of one request do not
affect others.

Preforking ensures that a server process is already waiting when a request
arrives, reducing latency.

While not the most efficient model, it works well in most real-world use cases.

c) (3 pts) XMPP is an Internet protocol used for instant messaging. An XMPP

server will typically entertain a very large number of long-lived TCP
connections to multiple clients, each of which is only sporadically active.
What server model would be most appropriate for this use case, and why?

Neither a thread-per-connection nor a process-per-connection model would scale
to very large numbers of connections, so an I/O multiplexing/event-based server
model would likely be adopted, using select() or similar notification mechanisms.

d) (4 pts) Network Address Translation. Many home users use multiple

machines behind a NAT gateway. In the past, some ISPs threatened to
ban users for using such devices unless they signed up for more
expensive service tiers. Could an ISP reliably detect that a customer is
using a NAT device by monitoring the TCP/IP traffic that is sent from/to
the customer’s IP address? Justify your answer!

No and yes.

No, because NAT guarantees that all traffic appears to be originating from the
single IP address assigned to the external facing gateway of the NAT device.
NAT works just because the outside Internet is entirely unaware, and in fact
cannot tell, that multiple devices are located inside the private network. As one
solution aptly said: trying to guess if a machine is using NAT is like trying to
guess the number of rooms in a house by looking at it from the outside.

Yes, because in practice an analysis of traffic patterns could identify patterns that
are unlikely to be produced by a single machine. In addition, OS fingerprinting
(which measures unique characteristics of individual TCP/IP network stack
implementations, such as timing-related characteristics) could be applied to
deduce the device type. Such determination is unlikely to be as reliable as ISPs
would have needed to enforce such stipulations, which is why so far (to the best
of my knowledge) no ISP ever decided to enforce this ban.

CS 3214 Spring 2010 Final Exam Solutions

14/14

6. Essay Question: Virtual Memory Trends (16 pts)

In recent years, the amount of physical memory available in many desktop
machines has increased at a faster pace than the working set sizes of many
commonly used applications.
Discuss the implications of this trend on application programmers! Consider the
impact of this trend separately for each of virtual memory’s multiple design
features!

Note: This question will be graded both for content/correctness (10 pts) and for
your ability to communicate effectively in writing (6 pts). Your answer should be
well-written, organized, and clear.

No sample answer is provided.

A correct answer should have provided separate discussion of per-process
address spaces (and its implication on the linking/loading process and tool
chain); isolation and protection (the ability to prevent processes from accessing
each other’s memory and kernel memory); and resource virtualization (on-
demand paging, file caching, page faults, and thrashing).

	1. Linking and Loading (12 pts)
	2. Running Programs On Unix (18 pts)
	3. Multi-Threading (24 pts)
	4. Dynamic Storage Allocation (14 pts)
	5. TCP/IP Networking (16 pts)
	6. Essay Question: Virtual Memory Trends (16 pts)

