(CS3214 Fall 2025 Project 1 - “Minibash”

Due Date: See website for due date (Late days may be used.)

This project must be done in groups of 2 students. Self-selected groups must have regis-
tered using the grouper app (URL). Otherwise, a partner will be assigned to you.

1 Introduction

This assignment introduces you to the principles of process management and the com-
mand language used by the standard shell in a Unix-like operating system. In this project,
you will develop a simple command language interpreter that implements a subset of
bash’s functionality.

This is an open-ended assignment. In addition to implementing the required functional-
ity, we encourage you to define the scope of this project yourself.

1.1 Basic Shell Functionality

As described in System Interfaces volume of POSIX.1-2024 the shell is a command lan-
guage interpreter that receives input from a file, breaks the input into tokens, words, and
operators, then parses the input into simple or compound commands, performs various
substitutions, redirections, and executes executable files specified by the user. Lastly, the
shell will optionally wait for each command to complete.

Shells may receive their input from a regular file or by reading their standard input. We
refer to such inputs as shell scripts. Job control shells will also perform a set of man-
agement tasks that allows interactive use of the shell with a terminal. This project does
not focus on interactive use and job control, but rather on the abilities of the shell as an
interpreter of a simple command language.

A shell receives line-by-line input from a script that represents user commands. Some
user commands are builtins, which are implemented by the shell itself. If the input con-
tains the name of such a built-in command, the shell should execute this command im-
mediately. Otherwise, the shell should interpret the input as containing the name of an
external program to be executed, along with arguments that should be passed to it. In
this case, the shell will fork a new child process and execute the program in the context
of the child. Normally, the shell will wait for a command to complete before reading the
next command from its input file. However, if the user appends an ampersand ‘&’ to a
command, the command is started and the shell will continue with the next command im-
mediately. In this case, we refer to the running command as a “background job,” whereas
commands the shell waits for before processing the next command are called “foreground
jobs.”

Thus at a given point in time, a shell may run zero or more background jobs and zero or
one foreground jobs. If there is a foreground job, the shell waits for it to complete before
reading the next command. In addition, the shell informs the user about status changes
of the jobs it manages. For instance, jobs may exit, or terminate due to a signal, or be

Created by G. Back (gback@cs.vt.edu) 1 September 9, 2025

https://courses.cs.vt.edu/cs3214/fall2025/grouper
https://pubs.opengroup.org/onlinepubs/9799919799/utilities/V3_chap02.html#tag_19_01

(CS3214 Fall 2025 Project 1 - “Minibash”

stopped for several reasons. Note that there may not be any notifications in the common
case in which a foreground command finished successfully.

2 Strategy

2.1 Parsing the Input

We will be using the Tree Sitter library for our parser. Tree-sitter is a parser generator and
incremental parsing library that produces C code that can be embedded in any applica-
tion. We are using the bash grammar for tree sitter. A grammar for a language is a formal
description of its syntax. A parser is a program that can check whether a given input
string obeys this syntax. If so, it will deliver a syntax tree, which is a tree data structure
that represents the recognized (or “parsed”) syntax.

Since tree sitter was originally developed for tasks such as syntax highlighting, it pro-
duces a concrete syntax tree rather than an abstract syntax tree. This means that the parse
tree contains nodes for all tokens that are part of the input, including special charac-
ters, semicolons, parentheses, etc. However, tree-sitter grammars may name non-terminal
nodes as well. The resulting C APl is very compact; the documentation is provided here.

Consider the following example input:

echo two strings, reverse them and write the results to a file
echo hsab inim | rev > "outputfile.s"

When using the tree-sitter parse command, it will output only named nodes:

(program [0, 0] - [2, O]
(comment [0, 0] - [0, 64])
(redirected_statement [1, 0] - [1, 38]
body: (pipeline [1, 0] - [1, 20]
(command [1, 0] - [1, 14]
name: (command_name [1, 0] - [1, 4]
(word [1, 0] - [1, 41))
argument: (word [1, 51 - [1, 91])
argument: (word [1, 10] - [1, 141))
(command [1, 17] - [1, 20]
name: (command_name [1, 17]
(word [1, 17] - [1, 201]1)))
redirect: (file_redirect [1, 21] [1, 38]
destination: (string [1, 23] - [1, 38]
(string_content [1, 24] - [1, 351])
(simple_expansion [1, 35] - [1, 37]
(special_variable_name [1, 36] - [1, 371))))))

- [1, 20]
)

Named nodes here are program, comment, redirected_statement, body, pipeline, and so on. The
indentation level determines the tree structure of the parse tree - nodes that have identical
levels of indentation are at the same level in the parse tree. You can iterate over a nodes’
named children using _named._ variants of the t s_node_ functions.

Tree-sitter also provides the ability to specify field names for certain nodes; these are

Created by G. Back (gback@cs.vt.edu) 2 September 9, 2025

https://tree-sitter.github.io/tree-sitter/
https://github.com/tree-sitter/tree-sitter-bash
https://tree-sitter.github.io/tree-sitter/using-parsers/2-basic-parsing.html#basic-parsing
https://tree-sitter.github.io/tree-sitter/using-parsers/2-basic-parsing.html#node-field-names

(CS3214 Fall 2025 Project 1 - “Minibash”

shown using a colon, e.g., the redirected statement node contains two child nodes with
names body: and redirect:. For some grammar rules, the use of these field names to find
child nodes may be useful, but unfortunately the bash grammar doesn’t always guarantee
that field names are unique.

The numbers in square brackets in the output of the parse command refer to the input
location taken up by the parsed nonterminal symbol - for instance, [0, 0] - [2, 0]
means that it starts at (line, col) of (0, 0) and extends to line 2 and column 0 (which is the
entire program). [1, 5] - [1, 9] refersto line 1 columns 5 to 9, which is where the
word hsab is located.

The bash grammar distributed as part of tree-sitter is comprehensive but complex; while
you may refer to it as reference, we found it easier to simply rely on the parse command
to examine the syntax trees for specific features. In other words, if you wish to implement
a specific bash feature, write a script that uses it, then examine the parse tree that results
when this script is being parsed by tree sitter.

2.2 Expected Features

This project is truly open-ended - with a complete grammar, you could, time and re-
sources permitting, reimplement all of bash (or a similar, POSIX-compliant shell). We
will limit what we expect based on the tests we provide (if you implement more features,
you will need to write your own tests.)

Current expectations include:

1. The ability to run simple commands and wait for them, or start them in the back-
ground.

2. Builtins for exiting the shell, killing and stopping jobs.
3. The ability to run pipelines of commands.

4. Common forms of redirection (from a file, to a file), including redirecting standard
error using the | & and >& syntax.

5. Handling common constructs such as single and double quotes.

6. Substitution of environment and shell variables as well as special builtin variables
such as $7.

7. Command substitution (e.g. backticks or $ (cmd ...) syntax.
8. Logical operators that form lists, including && and | |.
9. Boolean expressions via the external test (1) command only.

10. if, for, and while loops.

Created by G. Back (gback@cs.vt.edu) 3 September 9, 2025

https://github.com/tree-sitter/tree-sitter-bash/blob/master/grammar.js

(CS3214 Fall 2025 Project 1 - “Minibash”

2.3 Implementing Jobs, Pipelines, and I/O Redirection

Jobs may consist of multiple commands, or they may consist of only a single command.
A pipeline of commands is considered one job. Each command will be run in its own
process.

Your shell must create a separate process group for each job, no matter whether the job ini-
tially contains only a single process or multiple. All processes that form part of a pipeline
must thus be part of the same process group. See the Appendix for details

To implement the pipes itself, use the pipe (2) system call, or alternatively the pipe2 (2)
GNU extension. The latter allows you to set flags on the returned file descriptors such as
O_CLOEXEC. See the Appendix |C|for more details.

Your shell must use signals and forms of the waitpid () system call to learn from the OS
about the outcomes of the child processes it starts as part of each job, see the appendix
sections [Bland [Dl for details.

24 Creating processes with posix_spawn

In a 2019 paper published at the HotOS workshop, Baumann et al [1] criticized the use and
teaching of the Unix style of creating a new process by first creating a clone via fork (),
then customizing the new process’s environment through actions the clone performs on
itself before executing a new program. A key weakness of this approach is that it is incom-
patible with multithreaded programs. They propose the use of an existing alternative API
instead, i.e., posix_spawn (3). This call combines fork () and exec () into one, and it
also can be customized so that the child process will perform the necessary operations to
set up or join a process group and to redirect inherited file descriptors as desired.

For your implementation, you should use posix_spawn in lieu of fork + exec. Your
implementation will thus avoid the potential sources of bugs that the use of fork ()
introduces, such as inadvertently attempting to update parent data structures in the child
process, and in general will exhibit to easier-to-understand control flow and memory
access semantics. Control flow will be traditional and linear: posix_spawn will be called
once, and return once, like any ordinary function. It will spawn a new program in a
new process as a side effect. This child process will never directly access data structures
inherited from the parent, though it relies on inheriting open file descriptors like in the
fork case. posix_spawn also does not change the fact that the created process will
immediately run concurrently with the parent process when it returns. In other words,
you may think of it as a combination of fork and exec, not of fork, exec, and wait.

When using posix_spawn, you must observe all of the following hints
¢ Use the posix_spawnp variant to be able to find programs in the user’s path.

* Use posix_spawn_file_actions_adddup2 to wire up pipe file descriptors and
handle the redirection of standard error.

Created by G. Back (gback@cs.vt.edu) 4 September 9, 2025

(CS3214 Fall 2025 Project 1 - “Minibash”

* Use posix_spawn_-file_actions_addopen to wire up I/O redirection from/to
files.

¢ Useposix_spawnattr_setpgroup along with the POSIX_SPAWN_SETPGROUP flag
to establish or join a new process group.

* Use posix_spawnattr_setflags to set the desired flags. You may include
POSIX_SPAWN_USEVFORK to make use of the specialized (and slightly faster)
viork () system call. Note that you may call this function only once since later
calls will replace the flags set in earlier ones. Thus, you need to bitwise combine all
necessary flags into one value before calling it with this value.

* You will need to pass the current environment as the last argument. Add an external
declaration like so extern char xxenviron;.

3 Use of Git

You will use Git for managing your source code. Git is a distributed version control
system in which every working directory contains a full repository, and thus the system
can be used independently of a (centralized) repository server. Developers can commit
changes to their local repository. However, in order to share their code with others, they
must then push those commits to a remote repository. Your remote repository will be
hosted on git.cs.vt.edu, which provides a facility to share this repository among
group members. For further information on git in general you may browse the official
Git documentation: http://git-scm.com/documentation, but feel free to ask ques-
tions on the forum as well! The use of git (or any distributed source code control system)
may be new to some students, but it is a prerequisite skill for most programming related
internships or jobs.

You will use a departmental instance of Gitlab for this class. You can access the instance
with your SLO credentials at https://git.cs.vt.edu/.

The provided base code for the project is available on Gitlab at https://git.cs.vt.edu/cs3214-
staff/minibash,

One team member must fork this repository by viewing this page and clicking the fork
link. This will create a new repository for you with a copy of the contents. From there
you must view your repository settings, and set the visibility level to private. On the
settings page you may also invite your other team member to the project so that they can
view and contribute.

Group members may then make a local copy of the repository by issuing a git clone
<repository> command. The repository reference can be found on the project page
such as git@git.cs.vt.edu:teammemberwhoclonedit/minibash.git To clone
over SSH (which you may need to do on rlogin), you will have to add an SSH public
key to your profile by visiting https://git.cs.vt.edu/-/user_settings/ssh_
keys. This key is separate from the key you added to your /.ssh/authorized keys

Created by G. Back (gback@cs.vt.edu) 5 September 9, 2025

http://git-scm.com/
git.cs.vt.edu
http://git-scm.com/documentation
https://about.gitlab.com/
https://git.cs.vt.edu/
https://git.cs.vt.edu/cs3214-staff/minibash
https://git.cs.vt.edu/cs3214-staff/minibash
https://git.cs.vt.edu/-/user_settings/ssh_keys
https://git.cs.vt.edu/-/user_settings/ssh_keys

(CS3214 Fall 2025 Project 1 - “Minibash”

file. Although you could use the same key pair you use to log into rlogin, we recommend
using a separate key pair. This way you can avoid storing the private key you use to
access rlogin on rlogin itself. Alternatively, you may also create and use access tokens.

If updates or bug fixes to this code are required, they will be announced on the forum.
You will be required to use version control for this project. When working in a team, both
team member should have a roughly equal number of committed lines of code to show
their respective contributions.

Please note. To facilitate the automated grading of your git usage, you must follow the
following rules:

* Do not rename the repo when you fork it.

* Do not create a git group; fork the repo under the namespace of one of the two group
members.

* Make sure that, once you have finished, your final product will be on the master
branch.

* Make sure that the git commit log on this branch shows the contributions of both
team partners under their CS pid.

* You may use branches during development, but if you do, make sure to merge those
branches. Don’t squash your commits when you do so.

* You must use git.cs.vt.edu and not any external git server.

3.1 Code Base

To build the provided code, read the README.md file. You need to build the tree-sitter
and tommyds libraries first.

Read the provided code first.

4 Testing

We will provide a test driver to test your project, and tests for the basic and advanced
functionality. The tests are part of the repository, which may be updated once before the
deadline.

We expect that your shell does not have memory leaks, which we will use valgrind to test.

Some tests are also in the Gitlab repository that you forked to start the project. If updates
to the tests come out you will have to pull from the remote repository to update your local

copy.

Created by G. Back (gback@cs.vt.edu) 6 September 9, 2025

(CS3214 Fall 2025 Project 1 - “Minibash”

5 Grading

Rubrics. This project will account for 100 points, or roughly 1/4 of the achievable project
points.

10 points are awarded for correct use of version control. In addition, deductions may be
taken for deficiencies in coding style and lack of robustness.

Coding Style. Your coding style should match the style of the provided code. You
should follow proper coding conventions with respect to documentation, naming, and
scoping.

You must check the return values of all system calls and library functions, with the sole
exception of malloc(3) or calloc(3). (Production code would need to check for those as

well; this is a simplification for this project.) This requirement includes calls such as
kill(2) and close(2).

You may not use unsafe string functions such as st rcpy () or strcat (), see the website
for a complete list.

Submission. We do not require a design document for this project.

You must submit a .tar.gz file of your ’src” directory, which contains a Makefile. ’“src’
directory must appear as a subdirectory in your tar file. You need to run ‘'make clean’
on your directory before you create your tarball. Make sure to also delete all temporary
folders and files (i.e. clean your submission to pertinent files).

Please use the submit.py script or web page and submit your tar file under ‘p1’. Only one
group member needs to submit. See the website for further submission instructions.

Good Luck!

References
[1] Andrew Baumann, Jonathan Appavoo, Orran Krieger, and Timothy Roscoe. A fork()

in the road. In Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS
19, page 14-22, 2019.

Created by G. Back (gback@cs.vt.edu) 7 September 9, 2025

(CS3214 Fall 2025 Project 1 - “Minibash”

Appendix

A Process Groups

User jobs may involve multiple processes. For instance, the command line input 1s |
grep filename requires that the shell start two processes, one to execute the 1s and
the other to execute the grep command. Aside from this example, child processes that
a user program may star should usually be part of the same job so that the user can
manage them as one unit. To help manage these scenarios, Unix introduced a way to
group processes that makes it simpler for the shell and for the user to address them as
one unit.

Each process in Unix is part of a group. Process groups are treated as an ensemble for the
purpose of signal delivery and when waiting for processes. Specifically, the ki1l (2),
killpg (2), and waitpid(2) system calls support the naming of process groups as
possible targets] In this way, if a user wants to terminate or stop a job, it is possible for
the shell to send a termination or stop signal to a process group that contains all processes
that are part of this job. To facilitate this mechanism the shell must arrange for process
groups to be created and for processes to be assigned to these groups.

Each process group has a designated leader, which is one of the processes in the group.
The process group id of a process group is equal to the process id of the leader. Child
processes inherit the process group of their parent process initially. They can then form
their own group if desired, or their parent process can place them into a different process
group.

The shell must create a new process group for each job and make sure that all processes
that will be created for this job become members of this group. Note that while the process
group management facilities are available to all user programs, only shell programs will
typically make use of them — for most other programs, the default behavior of inheriting
the parent’s process group is a desirable default.

B Processing Job/Process Status Changes

At a given point in time, a shell script may have multiple jobs running, each executing
arbitrary programs chosen by the user. Because the shell cannot and does not know what
these programs do, it has to rely on a notification facility from the OS to be informed when
these jobs encounter events the shell needs to know about. We refer to such events as
“changing status,” where “status” means whether the job is runningf] has been stopped,

!For instance, the ‘make’ utility program starts many other processes such as compilers and linkers.

Note the idiosynchracies of the APL kill(-pid, sig) does the same as killpg(pid, sig). You can use either,
but make sure to use the correct sign corresponding to the call you use.

3We use the word “running” here not in the sense of the simplified process state diagram, but rather
in the informal sense of having been started, but not having finished, and also not currently suspended
(stopped) by the user or system.

Created by G. Back (gback@cs.vt.edu) 8 September 9, 2025

(CS3214 Fall 2025 Project 1 - “Minibash”

has exited, or has been terminated with a signal (for instance, crashed).

This notification facility involves a protocol in which the OS kernel sends an asynchronous
signal (SIGCHLD) to the shell, and in which the shell then follows up by executing a sys-
tem call (a variant of wait (), specifically waitpid (), as shown in the provided starter
code)f]

If such notifications arrive asynchronously, they could arrive at inopportune points in
time where the shell is not prepared to handle them. For this reason, we ask the OS to
delay their delivery until the shell is ready to handle them. This is done by delaying the
delivery of this signal. Note that the shell may also directly ask the OS to block it until
any child has changed state - it does that whenever it waits for job, see the provided code.

C Implementing Pipes

A pipe must be set up by the parent shell process before a child is forked, which happens
inside the posix_spawn system call. Forking a child will inherit the file descriptors that
are part of the pipe. The child must then redirect its standard file descriptors to the pipe’s
input or output end as needed using the dup2 (2) system call. If the user used the | &
instead of the | symbol, both standard output and standard error should be redirected to
the pipe.

Although the parent shell process creates pipes for each pair of communicating children
before they are forked, it will not itself write to the pipes or read from the pipes it creates.
Therefore, you must make sure that the parent shell process closes the file descriptors
referring to the pipe’s ends after each child was forked. This is necessary for two reasons:
first, in order to avoid leaking file descriptors. Second, to ensure the proper behavior of
programs such as /bin/cat if the user asks the shell to execute them. To see why, we
must first discuss what happens to file descriptors on fork (), close (), and exit ().

Each file descriptor represents a reference to an underlying kernel object. When a new
process is created, a shallow copy of these descriptors is made. Afterwards, both the child
and the parent process have access to any object the parent process may have created (i.e.,
open files or other kernel objects). Closing a file descriptor in the (parent) shell process
affects only the current process’s access to the underlying object. Hence when the parent
shell closes the file descriptor referring to the pipe it created, the child processes will still
be able to access the pipe’s ends, allowing it to communicate with the other commands in
the pipeline.

The actual object (such as a pipe or file) is destroyed only when the last process that has at
least one open file descriptor referring to the object closes the last file descriptor referring
to it. If you failed to close the pipe’s file descriptors in the parent process (your shell),
you compromise the correct functioning of programs that rely on taking action when
their standard input stream signals the end of file condition. For instance, the /bin/cat

“Such protocols are widely used in systems programming - for instance, an operating system kernel
interacts with devices in a very similar way through interrupts.

Created by G. Back (gback@cs.vt.edu) 9 September 9, 2025

(CS3214 Fall 2025 Project 1 - “Minibash”

program will exit if its standard input stream reaches EOF, which in the case of a pipe
happens if and only if all descriptors pointing to the pipe’s output end are closed. So if
cat’s standard input stream is connected to a pipe for which the shell still has an open file
descriptor, cat will never “see” EOF for its standard input stream and appear stuck.

Lastly, note that when a process terminates for whatever reason, via exit () or via a sig-
nal, all file descriptors it had open are closed by the kernel as if the process had called
close () before terminating. This means that you do not need to worry about making
sure that file descriptors you open for the shell’s child processes are closed after these
child processes exit. However, since the shell is a long running program that does not
exit between user commands, the shell must close its own copies of these file descrip-
tors to avoid above-mentioned leakage. If it did not, it would eventually run out of file
descriptors because the OS imposes a per-process limit on their number.

Although the processes that are part of pipeline typically interact with each other through
the pipe that connects their standard streams, they are still independent processes. This
means they can exit, or terminate abnormally, independently and separately. When your
shell calls waitpid () to learn about these processes’ status changes, it will learn about
each one separately. You will need to map the information you learn about one process
to the job to which it belongs, using a suitable data structure you define in your shell
implementation.

D Process Status Overview

Here is a brief table summarizing facts about the status changes and the corresponding
macros you can apply to the status (out) parameterf| returned by waitpid:

>A common mistake some students make is to confuse the exit status and the job status. The exit status
is a single integer value that a child process can pass to the exit (2) system call and which the parent can
retrieve via waitpid (), whereas the job status is an internal shell variable/struct field that records the
shell’s knowledge about the job control status of a job, e.g., whether it’s running or stopped. waitpid will
also use status to report when processes where stopped (or terminated) by a signal, so your shell must use
the process status information obtained via waitpid to update the job’s job control status as necessary.

Created by G. Back (gback@cs.vt.edu) 10 September 9, 2025

(CS3214 Fall 2025

Project 1 - “Minibash”

Event How to check for it | Additional info Process Process
stopped? | dead?

User stops fg pro- | WIFSTOPPED WSTOPSIG equals | yes no

cess with Ctrl-Z SIGTSTP

User stops process | WIFSTOPPED WSTOPSIG equals | yes no

with stop (bash) or SIGSTOP

kill —STOP (bash)

non-foreground WIFSTOPPED WSTOPSIG equals | yes no

process wants SIGTTOU or SIGT-

terminal access TIN

process exits via | WIFEXITED WEXITSTATUS has | no yes

exit () return code

user terminates pro- | WIFSIGNALED WTERMSIG equals | no yes

cess with Ctrl-C SIGINT

user terminates pro- | WIFSIGNALED WTERMSIG equals | no yes

cess with kill SIGTERM

user terminates pro- | WIFSIGNALED WTERMSIG equals | no yes

cess with kill -9 SIGKILL

process has been | WIFSIGNALED WTERMSIG equals | no yes

terminated (general signal number

case)

Since we do not focus on interactive job control in this project, we will not test the cases
involving SIGTSTP, SIGINT, SIGTTIN, or SIGTTOU.

Additional information can be found in the GNU C library manual, available at http:
//www.gnu.org/s/libc/manual/html_node/index.htmll

Created by G. Back (gback@cs.vt.edu)

11

September 9, 2025

http://www.gnu.org/s/libc/manual/html_node/index.html
http://www.gnu.org/s/libc/manual/html_node/index.html

	Introduction
	Basic Shell Functionality

	Strategy
	Parsing the Input
	Expected Features
	Implementing Jobs, Pipelines, and I/O Redirection
	Creating processes with posix_spawn

	Use of Git
	Code Base

	Testing
	Grading
	Process Groups
	Processing Job/Process Status Changes
	Implementing Pipes
	Process Status Overview

