2

VIRGINIA TECH.

CS 3214: Project 2

Fork-Join Threadpool

Thursday October 16t , 2025; 7:00pm EDT
Christian Franklin <christianf23@vt.edu>

Topics

Getting Started and Basics
Threadpool Design
Codebase Intro
Logistics

o Grading

o Test Driver
o Scoreboard

Debugging
Performance
Advice

Questions

Getting Started and
Basics

First Step!

1. One member will fork the base repository:
https://qit.cs.vt.edu/cs3214-staff/threadlab

1. Invite partner to collaborate

Go to Settings > Members to add them
Check partner role permissions too

1. Both members will clone the forked
repository on their machines:

$ git clone <your git repo url>.git l

1. IMPORTANT: Set forked repository to
private

Go to Settings > General > Visibility, project features, permissions
Potential Honor Code Violation if not set to private

{0} Settings General

Integrations

Webhooks

Access Tokens
Repository

CIfcCD

Packages and registries
Monitor

Usage Quotas

*Your forked repository will have a
navigation menu on the left side.
Click under Settings to add members
and set repo to private

https://git.cs.vt.edu/cs3214-staff/threadlab
https://git.cs.vt.edu/cs3214-staff/threadlab
https://git.cs.vt.edu/cs3214-staff/threadlab

ThreadPool

Some Basics

e Thread
o A single sequential flow within a program
o A single process can have multiple threads
e Threadpool - collection of idle threads that to do work for an external
program
o Doesn’t do anything unless work is given to it
o Provides an API for external programs or clients to use without
adding locking semantics
o Less-headache way to add concurrency to programs

Some Basics

e Thread
o A single sequential flow within a program
o A single process can have multiple threads
e Threadpool - collection of idle threads that to do work for an external
program
o Doesn’t do anything unless work is given to it
o Provides an API for external programs or clients to use without
adding locking semantics
o Less-headache way to add concurrency to programs

Basic lllustration

As tasks arrive,

they are placed

on a queue

C Task Queue
9

8| |7
Thread Pool)
R

Threads on the
thread pool grab
the next available
task on the queue

Source: https:/www.classes.cs.uchicago.edu/archive/2016/spring/12300

1/na html

https://www.classes.cs.uchicago.edu/archive/2016/spring/12300-1/pa3.html
https://www.classes.cs.uchicago.edu/archive/2016/spring/12300-1/pa3.html
https://www.classes.cs.uchicago.edu/archive/2016/spring/12300-1/pa3.html

Where you come in...

e You will create your own Threadpool API that external programs will call

e \What do we write?

I threadpool.c

2. Implementations for functions and structs from jugigeEeloleleN Ny

3. Static helper functions

Functions you will implement

struct thread pool * thread pool new (int nthreads) ;
void thread pool shutdown and destroy(struct thread pool ¥*);

struct future * thread pool submit (struct thread pool *pool, fork join task t task, void *

void * future get(struct future ¥*);
void future free(struct future *);

e Read over threadpool.h for full documentation: you must implement these functions!

e Notincluded are static function(s) you'll add to threadpool.c

N~

VIRGINIA TECH.

Threadpool Design

Threadpool Design

e Methodologies
o Split up tasks among n workers
o Work Sharing / Work Stealing
o Internal and External Submissions
o Work Helping

e No global variables! (exception of thread-local variables - we will talk
about these later)

Work Sharing

e Single, central queue from which all threads remove tasks

e Drawback: queue can become a point of contention especially with
handling small tasks

Work Stealing

e Global list of tasks
e Local lists of tasks for each worker
e \Worker main loop:
o Dol have tasks? Pop from front (LIFO)

o Are there global tasks? Pop from back (FIFO)

o Does anyone else have tasks? Pop from back (FIFO)

Work Stealing (cont.)

e Stealing spreads work evenly to idle threads
e Each queue/deque needs to be protected

e \Workers still wait for other threads to steal and finish futures they
depend on (we’ll get back to this)

external submissions

Global Queue k[]—[

(FIFO)
¢ op

Worker 1 [

gt A

T T

Worker 2

#oop .
—{

1

\push_A
steal
R

bottom top

Worker 3

Internal vs External Task Submissions

e External Submission - client submits a new task to threadpool

o Task gets added to the global queue

e Internal Submission - thread submits a subtask

o “Subtask” gets added to worker’s local deque
- Worker executes it later
- Or a co-worker steals the task to execute itself

e For submissions to the threadpool, you’ll need to distinguish these
cases

o But how?

Mergesort

sort(A[0..64])

sort(A[0..32])

sort(A[32..64])

sort(A[0..16])

sort(A[16..32])

sort(A[32..48])

sort(A[48..64])

Example

* Check out mergesort.c to see full functions

mergesort parallel(int *array, int N) {
int * tmp = malloc(sizeof(int) * (N));
struct msort_task root = {
.left = 0, .right = N-1, .array = array, .tmp = tmp
}:

struct thread pool * threadpool = thread pool new(nthreads);

//EXTERNAL submission from client

struct future * top = thread pool_ submit(threadpool, //internal function
(fork _join task t) mergesort internal parallel,
&root) ;

//demands answer once it’s ready

future_get(top) ;

future_free (top) ;

thread pool_ shutdown_and destroy (threadpool) ;

free (tmp) ;

Example (part 2)

static void

mergesort internal parallel (struct thread pool * threadpool, struct msort_task * s)

{ //If array small, no more submitting just internal sort (BASE CASE)

if (right - left <= min_task size) { mergesort internal (array, tmp+left, left, right); }

not all code shown

//INTERNAL Submission from the worker thread
struct future * lhalf = thread pool submit(threadpool, (fork join task t) mergesort_internal parallel,
&mleft) ;

//Worker thread works on other half

mergesort internal parallel (threadpool, &mright);
future get(lhalf);

future free (lhalf);
merge (array, tmp, left, left, m, right);

Work Helping

e In future_get, you can only return the result once the future is done

executing
e The task might not be completed when future_get is called (or even
running)
e Consider cases for getting the result from future get:
o If future already executed -> Hurray!

o But what happens if the future isn’t ready?
m \What should the thread do while waiting?

Work Helping (cont.)

e Threads should make best use of their time by...
o Minimizing sleeping
o Maximizing time spent executing tasks
e If no threads are executing a task you depend on, do it yourself
o Workers can then recursively handle their own dequeue (FIFO)

e If athread is executing the task you depend on? May be beneficial to
execute other tasks instead of waiting

Thread Local Variables

e \Want to be able to access your workers deque (and probably locks)
during thread_pool_submit()

e How can we distinguish external/internal submissions?

Thread Local Variables

e Naive approach would be to loop through workers and check
pthread_self(),...
e Instead, use some variable which would be different for each thread
o AKA thread-local variables/storage

_Thread_local worker * current_worker;

https://en.wikipedia.org/wiki/Thread-local_storage#C_and_C.2B.2B
https://en.wikipedia.org/wiki/Thread-local_storage#C_and_C.2B.2B
https://en.wikipedia.org/wiki/Thread-local_storage#C_and_C.2B.2B

N~

VIRGINIA TECH.

Implementation
Tips

struct thread_pool

e Should contain any state you need for a threadpool
e |deas:
o Locks (pthread_mutex_t)

m To protect the global queue
Queues/Deques (provided 1ist struct from previous project)
Semaphores (sem_t)
Conditional Variables (pthread_cond_t)
Shutdown flag
List of workers associated with this thread pool
Etc.

O O O O O O

struct worker

e Should contain a worker struct as well

e |deas:

Maintain which pool this worker is for
Queue of internal submissions

Lock for local queue

etc...

O O O O

Futures

e How do we represent a task we need to do?
o future
o Threadpool: an instance of a task that you must execute

o Client: a promise we will give them a reply when they ask for it

struct future

{

fork join task t task; // typedef of a function pointer type that you will execute

void* args; // the data from thread pool submit

void* result; // will store task result once it completes

execution

// may also need synchronization primitives (mutexes, semaphores, etc)

Futures (cont.)

e You will invoke “task” as a method, it represents the method passed
through by thread_pool_submit, the return value gets stored into
the result

fut—>result = fut->task(pool, fut->data);

Future lllustration THREADPOOL
CLIENT

CLIENT

.'FIITIIRE GET\ : ‘
' ") | WORKER THREAD
\

Q-' «!_“_,__. —’5"

Ay

f \

——

Functions you will implement

struct thread pool * thread pool new (int nthreads) ;
void thread pool shutdown and destroy(struct thread pool ¥*);

struct future * thread pool submit (struct thread pool *pool, fork join task t task, void *

void * future get(struct future ¥*);
void future free(struct future *);

e Read over threadpool.h for full documentation: you must implement these functions!

e You can also add static function(s) to threadpool.c

thread_pool new

e Create thread pool
Initialize worker threads

e Call pthread_create: starts a new thread in the calling process. The new
thread starts execution by invoking start_routine(); arg is passed as the
argument of start_routine()

#include <pthread.h>

int pthread_create(pthread_t *restrict thread,
const pthread_attr_t xrestrict attr,
void x(kstart_routine)(void x),
void xrestrict arg);

N~

VIRGINIA TECH.

Logistics

New This Semester

* Implementation will be done in 5 stages
« Designed to help you stay on track
* Must pass the tests mentioned in each stage — no more!

Stage 1

« Should only be passing test 7 and test 9
 Be able to start a thread pool with n threads and shut it down
* Implement everything except thread_pool submit() and future_get()

Stage 2

* Implement work-sharing, with a single lock
* Do not implement helping
« Should now be passing:

./threadpool_test
./threadpool_test?
./threadpool_test3 -n 2
./threadpool_test4
./threadpool_test5
./threadpool_test6 -n 100
./threadpool_test7?
./threadpool_test8 —-n 50
./threadpool_test9 -n 50
./kenken3 -d 2 -n 100

Stage 3

* Implement helping
» Should now be passing all the tests under minimum requirements
« Some tests will still timeout

Stage 4

* Implement work stealing

« Add per-worker queues

» Workers should check global queue first

« Should not increase the number of tests you will pass

Stage 5

* Implement a fully-fledged, optimized thread pool
« Break up the global lock

« Utilize a finer-grained strategy

« Should pass all tests

Grading

e Submit code that compiles
Test using the driver before submitting
When grading, tests will be run 3-5 times, if you crash a single time it's
considered failing

e Benchmarked times will be the average of the 3-5 runs, assuming you
pass all of them

Grading (cont.)

e Breakdown (points TBA)
o Git Usage
o Step Completion
o Functionality Tests (Basic/Advanced)
o Performance
e GTAs will determine the exact breakdown of points
e Performance will breakdown into rough categories based on real time
scores
e You must pass the basic tests before getting anything for performance

Performance

e Relative to peers and sample implementations
e Points only for the tests on the scoreboard
o N Queens, Mergesort, Quicksort (8, 16, and 32 threads), possibly
Fibonacci
e A rough cutoff for real time benchmarks will be posted later on by Dr.
Back (last semester’s scoreboard)

https://courses.cs.vt.edu/cs3214/fall2024/projects/project2scoreboard

Performance

Based on the scoreboard and my own implementation(s), we'll be using the following cutoffs (in seconds):

Test Good Mediocre Lacking Serial (estimated)

MSL/8 <12 12-30
MSL/16 <8 8-30
MSL/32 <6.5 6.5-30
Qs/8 <9 9-30
QS/16 <6.5 6.5-30
QS/32 <55 5.5-30
NQ/32 <7 7-60
Fib/32 <4 4-20
Simp/32 <2 2-20
Kenken/32 <2 2-20

>30
>30
>30
>30
>30
>30
>60
>20
>20
>20

48
48
48
39
39
39
127
21
27
25

Note that "Good" performance for all but Fib/32 and perhaps NQ/32 is achievable even with a single lock implementation.

ONLY for reference - numbers will likely change

Test name: 1 2 4 8 14 32
BASIC1: Basic functionality testing (1)
Performance basic test 1 . Ex]) [x1] [x]
BASICZ: Basic functionality testing (2)
basic test 2 [X] [X] [X]
BASIC3: Basic funmctionality testing (3)
basic test 3 [x] [x] [x]
BASIC&: Basic functionality testing (4)
basic test & [x] [X]
BASICS: Basic functionality testing (&)
basic test 5 [x] [x]
BASICA#: Basic functionality testing (&)
basic test & [x]
MERGESORT: parallel mergesort
mergesort small [x] [x1 [x] [x1 [x]
mergesort medium [X] [x] [X] [x] [X]
mergesort large [6.1625] [5.764s5] [4.68%9s]
QUICKSORT: parallel quicksort
guicksort small [x] [x] [x] [x] [x]
guicksort medium [x] [x] [x] [x] [x]
quicksort large [B.BB4s] [5.859s5] [4.291s]
PSUM: parallel sum using divide—-and-conguer
psum_test small [x] [x] [x] [x] [x]
psum_test medium [x] [x] [x] [x1 [x]
psum_test large [x1 [%] [x]
MQUEEMS: parallel n-queens solver
ngueens 11 [¥] [%1 [¥] [%1 [X]
ngueens 12 [x] [x] [X] [x] [X]
ngueens 13 [x] [X] [x]
ngueens 14 [9.1145] [6.65%9s]
FIBONACCI: parallel fibonacci toy test
fibonacei 32 [x] [x] [x] [x] [x]
fibonacci &1 [x] [X]

Visual Studio Code Terminal Issues

e Use a separate terminal (like git bash) to run the tests

e VS Code spins up some extra processes on rlogin to manage files, they
interfere with the somewhat strict thread limits we enforce on the tests
to guarantee your thread pool isn't creating additional workers to juice

performance numbers

Test Driver

S ~cs3214/bin/fjdriver.py [options]

e (Can take along time to run all tests
e Reports if you passed each test, and times for the benchmarked ones

10 klalitha@pawpaw in ~/CS3214/threadlab/tests>fjdriver.py =-h

Usage: /home/courses/cs3214/bin/fjdriver.py [options]

-V Verbose

-V Print Version and exit

-a Run benchmark anyway even if machine is not idle

-r Only run required tests.

-h Show help

-p <file> - Location of threadpool implementation, default ./threadpool.c
-1 List available tests

-t Filter test by name, given as a comma separated list.

e.g.: -t basicl,psum

Test Driver

e Make sure to run tests multiple times, race conditions can cause you to

crash only 20% of the time
e Will run multiple times to ensure consistency when grading (and get a

good average for times)
e All of the tests are C programs, compiled against your threadpool

Test Driver

S ~cs3214/bin/fjdriver.py -g -B 5

e Runs the tests 5 times and averages the results
e Helpful to simulate grading environment

Scoreboard

e https://courses.cs.vt.edu/cs3214/spring2025/projects/project2scoreboard
e You can post your results to the scoreboard by using the fjpostresults.py
script

CS3214 Computer Systems - Spring 2021 Home Exercises « Projects« Exams« More Info « Auth Only » Admin » Logout (tanvihaldankar)

Fork-Join Pool Scoreboard

Note: on this page, you can see the results others have obtained with their FJ pool implementations. To add your results, run fidriver.py , which will produce a file full-

results. json in a folder It creates. Please, do not Include debugging output when running in benchimark mode

You can delete a submission, Your submission Is shown to you with your real uid, other submissions are shown to you with a hashed uld. You may submit via "fipostresults.py -p° to
make your submissions shown to others with your real uid

As the results can vary between runs, especially for the larger quicksort/mergesort benchmarks, the numbers on this page give only a rough indication. Running fidriver.py -9 -8

5 will report averages over 5 runs

Real Time CPU Consumption

UiD Date Basic MsL/8 MSL/16 MsSL/32 Qs/s Qs/16 Qs/3z2 NQ/16 NQ/32 F/32 MsL/8 MSL/16 MSL/32 Q5/5 Qs/10 Qs/20 NQ/16 NQ/32 F/32 Del

https://courses.cs.vt.edu/cs3214/spring2025/projects/project2scoreboard
https://courses.cs.vt.edu/cs3214/spring2025/projects/project2scoreboard

Debugging Tools

Debugging

e Debugging multi-threaded programs can be difficult

o Don’t just use printf()
e This project will challenge you in your debugging skills (GDB, Helgrind..)
e Helgrind**

o Valgrind tool

o Enable using --tool=helgrind in Valgrind command line

o Your best friend for tracing deadlocks and synchronization errors

o https://www.valgrind.org/docs/manual/hg-manual.html/

https://www.valgrind.org/docs/manual/hg-manual.html/
https://www.valgrind.org/docs/manual/hg-manual.html/
https://www.valgrind.org/docs/manual/hg-manual.html/
https://www.valgrind.org/docs/manual/hg-manual.html/

GDB Demo

*Make sure you have the debugging flags set in Makefile

gdb attach —p <PID> - Attach gdb to given process
info thread - see how many threads there are

thread <thread_num> - switch current thread
thread apply all bt - see what each thread is doing

Checking who owns a lock

Improving Performance

e Make sure you aren’t on a busy rlogin node!
o ssh <username>@portal.cs.vt.edu
e Minimize sleeping, maximize execution of tasks

e “... We recommend that you intentionally break the rule of signaling with
the lock held”

e Advanced Optimizations - CPU Pinning, Fixing False Sharing, Lockless
Queues

e CPU profiling — htop, perf

e Ask on Discourse! There’s a lot of other optimizations to try

General Advice

e Start Early (...now)
e How many lines of code?
o ~250-350 lines (not a good benchmark for difficulty)
e Most of time is spent debugging
o GDB, Helgrind, and Valgrind are your friends
o Debugging multi-threaded programs is difficult and time consuming
e Try different strategies
o Most of the learning is trying out different approaches - telling you
exactly what would give the best results would reduce the
educational experience

N~

VIRGINIA TECH.

Any Questions?

N~

VIRGINIA TECH.

Good Luck!

	Slide 1
	Slide 2
	Slide 3
	Slide 4: First Step!
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

