(CS3214 Fall 2025 Exercise 2

Due: See website for due date.

What to submit: Upload a tar archive that contains a text file answers.txt with your
answers for the questions not requiring code, as well as individual files for those that do,
as listed below.

This exercise is intended to reinforce the content of the lectures related to linking using
small examples.

As some answers are specific to our current environment, you must again do this exercise
on our rlogin cluster.

Our verification system will reject your submission if any of the required files are not in
your submission. If you want to submit for a partial credit, you still need to include all
the above files.

(CS3214 Fall 2025 Exercise 2

1. Linking Minibash

In this part of the exercise, you are asked to make small changes to the mini-bash starter
code to induce linker errors and changes to the executable. To that end, you should clone
a fresh copy of the starter code with

git clone git@git.cs.vt.edu:cs3214-staff/minibash.git
cd minibash

(cd tommyds; make)

(cd tree—-sitter; make)

cd src

make

The 3 parts are independent and you should undo any changes you made for one part
before continuing to the next.

1. After changing a total of 3 lines|[|in 2 files, minibash rebuilds but the linking step of
the build fails withf]

1d: signal_support.o:/..../minibash/src/./utils.h:18: multiple definition

of ‘variableId’; minibash.o:/.../src/./utils.h:18: first defined here

1d: utils.o:/..../src/./utils.h:18: multiple definition of ‘variableId’;
minibash.o:/..../src/./utils.h:18: first defined here

clang: error: linker command failed with exit code 1 (use -v to see invocation)
make: *%% [Makefile:29: minibash] Error 1

What lines were changed? Provide the output as a patch (which you can produce
viagit diff.)

2. (Undo any changes, perhaps with git checkout ., before the next step.) After
changing one line and adding one line to the original code, the project builds with-
out errors, but the following nm command shows this:

$ nm minibash | grep ts_extract_single_node_char
0000000000431818 T ts_extract_single_node_char

What lines were changed and how? Provide a possible set of changes as a patch.

3. (Reset the project again first.) After changing a single line in the Makefile, and
then running make -B, the project build fails with

...... /bin/l1d: minibash.o: in function ‘main’:
/..../src/minibash.c:309: (.text+0x2c) :
undefined reference to ‘tommy_hashdyn_init’
...... /bin/1d: /.../src/minibash.c:383: (.text+0x606) :
undefined reference to ‘tommy_hashdyn_ foreach’
...... /bin/1d: /.../src/minibash.c:384: (.text+0x615) :
undefined reference to ‘tommy_hashdyn_done’
clang: error: linker command failed with exit code 1 (use -v to see invocation)

!This is not counting any empty/whitespace lines. Also, in your reproduction, the line numbers do not
need to match.
’I introduced newlines for readability.

(CS3214 Fall 2025 Exercise 2

make: x** [Makefile:29: minibash] Error 1

What line was changed and how? Provide the output as a patch.

Don’t forget to revert to the original starter code for each part!

2. Baking Pie

From past courses (CS 2505, CS 2506) you are familiar with threats that can affect vulner-
able applications that contain buffer overflows. Some of the exploits that targeted such
applications made assumptions about the way in which they were built and run.

One particular assumption relates to the virtual addresses at which functions (text) or
data can be found, which traditionally has been static. Recently, some OS have instead
adopted position-independent executables as a default where the locations of functions
and global variables is randomized from run to run.

Write a program that can determine if it was built as a position-independent executable
or not.

For instance, if built as
gcc —no-pie ispie.c -o no.pie
it should output

$./no.pie
built with -no-pie

But if built like so:
S gcc —-pie —-fPIE ispie.c —-o pie
it should output

$./pie
built with -pie
Call your program ispie.c.

Your program should not write to or read any external files. Your program may spawn
child processes.

Hint: Non-pie executable’s global variables will be always at the same virtual address
from run to run whereas these addresses will vary from run to run when an executable is
linked as PIE.

(CS3214 Fall 2025 Exercise 2

3. Link Time Optimization

Traditional separate compilation and linking has an important drawback: since the inter-
mediate representation created by the compiler is no longer available at link time, poten-
tial interprocedural optimizations cannot be performed. For instance, the linker cannot
inline functions or replace calls to functions that produce constant results with their val-
ues.

Link Time Optimization (LTO) overcomes this drawback by preserving the compiler’s
intermediate representation and passing it along to the linker which can then perform
whole-program optimization across modules. Languages such as Rust use LTO to be able
to perform optimizations across the different source files that are part of a crate.

In this part of the exercise, you will be looking at how LTO works in a current compiler
(clang 20.1.8).

Create or copy the following files 1to.h, 1tol.cand 1to2.c:

double evaluate (double a, double b, double c, double x);

#include <stdio.h>
#include "lto.h"

int

main ()

{
double s = evaluate(l, 2, 1, -4);
return (int) (s);

}

#include <stdlib.h>

// some math function
#include "lto.h"

double evaluate (double a, double b, double c, double x)
{

return a * x * X + b * x + ¢c;

}

Compile and build the two files using the following commands:

clang -03 —-flto —-c ltol.c lto2.c
clang -03 —-flto ltol.o 1lto2.0 -o lto

Then answer the following questions:

1. Use objdump -d to find the code for the main () in the final 1t o executable. Copy
and paste the body of main (the disassembled machine code)!

(CS3214 Fall 2025 Exercise 2

2.

Now compile these programs without LTO like so:
clang -03 1ltol.c 1lto2.c -o nolto

Use objdump —-d nolto tolook at the main function, and reproduce the assembly
code here.

Explain in your own words what the compiler and linker did when LTO was en-
abled and how this was possible using LTO but not when LTO was not being used.

. What is the output of

./1lto; echo $?

and why?

4. Building Redis

Redis is a popular in-memory data store that is widely used in industry as a cache or
database. It was created by Salvatore Sanfilippo, better known as antirez.

In this part of the exercise you will look at how redis is compiled and built in order to
observe how compilers and linkers are used in a larger software project.

Your answers will be specific to the version of the GCC tool chain installed on rlogin this
semester.

1.
2.

Download and extract the source code of Redis 8.2.1.

Change into the directory into which you've extracted the source code and build it
using the command

make —-j V=1 |& tee LOG

The make program will run a number of commands to configure, compile, and link
multiple executables that are part of Redis. The tee program will receive the stan-
dard output and standard error streams and write them to the file LOG (in addition
to writing them to the console), which will come in handy for the rest of this section.

It will say that it’s a good idea to run make test, but you do not need to do that here.

. Find the command that makes the redis-server executable in the LOG. Look for

an invocation of cc that includes the flag -0 redis-server.
Reproduce the command in your answer.

List the 6 libraries that are statically linked with the redis-server executable.

. How much space does the redis-server executable take up on disk? (Use 1s -1

to find out.)

The command size (without any arguments) gives you an estimate of how much
memory is needed if the executable were fully loaded into memory, broken down

https://github.com/redis/redis/archive/refs/tags/8.2.1.tar.gz

(CS3214 Fall 2025 Exercise 2

by text/code, data, and bss. Run size on redis-server. What fraction of the
executable is taken up by code and data? Answer in percent, rounded to the nearest
percent.

7. The command strip strips an executable of those parts that are not necessary to
runit. Run strip on the redis-server executable and measure its new size with
ls —-1.

What percentage of the stripped executable is taken up by program code and data?
Give your answer as a percentage of the size of the stripped executable, rounding
to the nearest tenth of a percent.

8. Last, but not least, do not forget to remove the source directory from your rlogin file
space. It takes up about 228MB of space.

