(CS3214 Fall 2025 Exercise 1

Due: See website for due date.

What to submit: A tar file that should contain the file answers .t xt, which must be an
UTEF-8 encoded text file with answers for questions 1 and 2. For question 3, which asks
for code, include a file named dpipe. c in your tar file.

Use the submit.py script in ~cs3214/bin/submit.py to submit your tar file from the
command line, or use the submit website. Use the target identifier ‘ex1.’

The assignment will be graded on the rlogin cluster, so your answers must match this
environment. In addition, every student will use a variant of dpipe that is unique to them;
please visit cs3214 /fall2025/ exercises/ exercisel to find the number of your variant.

Understanding Processes and Pipes

In this exercise we consider a program “dpipe,” which, in connection with a ‘netcat” utility
program, can be used to turn any ordinary program into a network server. A "netcat’
utility program is a program that extends the standard Unix ‘cat’ utility over a network.

The learning goals of this exercise are:

¢ Understand how to write C code that makes system calls.

* Understand how to start and wait for processes in Unix with the fork () and waitpid ()

system calls.

¢ Understand how to create pipes as an example of an IPC (interprocess communica-
tion) facility.

* Understand how to manipulate a process’s standard input and standard output file
streams using standard Unix system call facilities (e.g. dup2 ()) that affect low-level
file descriptors. A very similar file descriptor manipulation is performed by a shell
when it sets up I/O redirection or pipes.

¢ Understand how to use the strace facility to trace a process’s system calls.

¢ Understand how to use the /proc file system to obtain information about processes
in a system.

* Gain a deeper understanding of process states using a practical example application
that combines process management, IPC, and network I/0O.

In this exercise, you are asked to observe, reverse-engineer, and then reimplement the
dpipe program. The dpipe binary is provided in ~cs3214/bin/dpipe.variants/
dpipe—-ABC on our machines, where ABC is the unique id created for you. For netcat, use
the ~cs3214/bin/gnetcat6 binary.

To allow you to invoke those commands directly, make sure that ~cs3214/bin and
(optionally) ~cs3214/bin/dpipe.variants are included in your PATH environment

https://courses.cs.vt.edu/cs3214/fall2025//exercises/exercise1
http://en.wikipedia.org/wiki/Path_(variable)

(CS3214 Fall 2025 Exercise 1

variable[] You should already have your PATH set up from exercise 0 to include the first
directory. If you haven’t, do this now.

Here’s an example session of how to use it. Say you're logged in to the machine ‘locust’
and run the command dpipe—-ABC wc gnetcat6 —-1 1599 9@ This will produce out-
put as follows:

[cs3214Q@locust sysl]$ ~cs3214/bin/dpipe.variants/dpipe-ABC wc gnetcat6 -1 15999
Starting: wc

Starting: gnetcaté6

Running in server mode

Note that the shell is still waiting for dpipe to complete at this point. The questions listed
in part[I]jmust be answered at this point, after you have started dpipe, but before the next
step. You may wish to continue reading and then return to this point, after opening a
second terminal on the same machine

The next command can be run on any rlogin machine, but you must replace 1ocust with
the name of the machine on which started the earlier command:

[cs3214Q@chinkapin ~]$ gnetcat6 locust-rlogin.cs.vt.edu 15999 < /etc/passwd
Running in client mode

47 119 2690
[cs3214Qchinkapin ~1$

The gnetcat6 instance started here connected to the gnetcat6 instance running on locusﬂ
and sent its input there (in this case, the content of file /et c/passwd). Gnetcat (running
on locust) outputs this data to its standard output stream, which is connected via a pipe
to the standard input stream of the ‘wc” program. The standard output stream of ‘wc’
is connected to the standard input stream of locust’s gnetcat6 instance. Anything out-
put by ‘wc” will then be forwarded to chinkapin’s gnetcat6 instance, which outputs it to
its standard output, thus appearing on the user’s terminal on chinkapin. You have just
turned the ordinary ‘wc’ program into a network service! The entire scenario is shown in

Figure/l]
Finally, dpipe exits when both of the processes it started have terminated:
[cs3214Qlocust sysl]l$

1. Using /proc The /proc file system, originally introduced as part of the Solaris OS,

The latter is, however, not necessary - you can also replace dpipe-ABC with its full path ~cs3214/
bin/dpipe.variants/dpipe-ABC whenever you invoke it.

2When you try this out, please replace 15999 with a number that with high likelihood is unique so you
do not conflict with other students using this machine, let’s agree to using 10 000 + last 4 digits of your VT
PID here. For instance, if your pid ends in 5999, you’d use 15999. If you don’t want to use your PID, then
use the number that is output by running: seq 10000 19999 | shuf | tail -1

SHint: ssh to portal.cs.vt.edu, then choose the machine on which your other shell session runs. If you're
using vscode you already have the ability to open a second terminal on the same machine. Or you can use
ssh’s jump option by doing ssh -J you@rlogin.cs.vt.edu you@locust tohop onto locust.

*You must specify the hostname as given, in the form locust-rlogin.cs.vt.edu. Please don't
blindly copy these instructions, replace it with the hostname of the machine your gnetcat6 is running on. It
should be shown in your prompt; if not, run the command hostname to see it.

(CS3214 Fall 2025 Exercise 1

forks,

1

1

1

1

I .

! for!<s, - dpipe ™~ _ waits for
! waits for N

! 7
1

1

1

1

1

}

\
! \
v v

stdin stdout
gnelt;gglg()EUSt gnetcat .

/etc/passwd stdout stein

Figure 1: Using dpipe to cross-link two programs’ standard input and output streams.

is a mechanism by which the Linux kernel provides information about processes
to users. This information is organized in directories and files that can be accessed
using ordinary tools such as 1s or cat. However, they do not represent actual
directories or files —rather, their content is created dynamically when a user accesses
them, based on the current state of the system and its processes. The kernel creates
a directory for each process, which is named for its pid. Within the directory, there
are additional files and directories that describe the current state of the process.

After you have started dpipe with ‘wc” and ‘gnetcat -1..., use the ps (1) command
to find the process ids of these three processes, then use ps or /proc to find the
parent process id, the process group id, and the current status of these processes.

(a) Provide the following information in table form:

Process PID | Parent PID | Process Group ID | State
dpipe-ABC
gnetcat
wc

You may find the proc (5) man page useful.[]

Use the single letter Linux shorthand for the process state. (Omit additional identi-
tiers such as s or + you may see.)

(b) You should find that all three processes are in the same state. To which of the
3 states of the simplified process state diagram discussed in lecture does this state
correspond?

(c) Now examine the /proc/nnnnn/fd directories for each process. Use 1s -1.
For each process’s open file descriptors, enter in the table below the device or object
to which it refers. Enter N/O if a file descriptor is not currently in use.

>The number (5) in parentheses denotes the section of the man pages in which the information is found.
On the command line, you would typeman 5 proc to access this page in section 5. man proc works too,
in this case, because only section 5 of the manual has an entry for proc.

(CS3214 Fall 2025 Exercise 1

File Descriptor | dpipe-ABC | wc | gnetcat6
(stdin) O
(stdout) 1
(stderr) 2

3

Look at Figure [I|and convince yourself that dpipe indeed creates the arrangement
shown there (minus the network connection, which has not yet been created).

2. Using strace. Processes use system calls to obtain services from the kernel. The
program ‘strace’ is a utility that can display which system calls a process is exe-
cuting. strace can trace individual processes from start to end; on request, it can
trace child and ancestor processes as well, and it can even trace already running
processes. Familiarize yourselves with the ‘strace’” command (use ‘'man strace’, for
instance). Frequently used switches include -f, —e, -p, -f££f, and —o which you
should memorize.

Run dpipe-ABC under strace, creating again the constellation of processes described
in the introduction (wc and gnetcat6), and use gnetcaté on another machine to send
data until dpipe exits. Use the ~ff and —o switches to strace to obtain separate
listings for dpipe and its child processes.

(a) Identify which system calls your assigned dpipe process made. From the rel-
evant strace output, copy the entries corresponding to the system calls pipe2 (),
close (), fork(),waitpid(),and exit ().

Hint: Linux’s implementation of the fork () system call is actually called
clone (), waitpid() is implemented using wait4 (), and exit () corresponds
toexit_group ().

pipe2 is a GNU extension that is not part of POSIX. It acts like pipe, except that it
also provides the option to set flags on the file descriptors pipe returns.

(b) Identify some of the system calls the process executing ‘wc” made. Select the
entries corresponding to write (), dup2 (), close (), and execve (). Stop at the
tirst execve () call that was successful (listed as returning 0 in strace’s output.)
The following system calls will be specific to the program dpipe started so they
are not actually part of dpipe (recall that exec () replaces the current program, but
continues the current process and thus continues the strace of that process.

(c) Like part b), except for the process executing ‘gnetcat6’.

Note that the traces for part (b) and (c) correspond to the system calls made by the
child processes spawned by dpipe-ABC between fork() and exec().

(d) Now, rerun strace with the switches -f —-e wait4, accept, read without
connecting the gnetcat6 client (like in part [I). All three processes will be inside
the kernel, in one of these three system calls. Answer the following questions for
each process:

(CS3214 Fall 2025 Exercise 1

* What is the state for each process, using the nomenclature of the simplified
process state diagram discussed in lecture?

* Which process is in which system call?

* How can each process’s state be explained from the semantics of that system
call?

Use the following example format for your answer: Process ‘dpipe’ is in the (insert
state here) state in the (insert system call here) system call because it is (describe
what caused it to be in this state).

If you are uncertain about the semantics of any of these system calls, be sure to read
their man pages or ask on the discussion forum.

3. Implement dpipe-ABC.

Armed with the knowledge gained in the previous part, implement dpipe-ABC so
that it issues exactly the system calls you've observed in the traces, in the same
order.

In general, you should be looking for C functions with the same name as the system
calls that appears in the strace. You may have noticed the C-like syntax in the strace
output. However, for some system calls, you should instead use a POSIX function
that wraps the actual system call. Notably, we recommend that you use fork ()
instead of calling clone (2) and waitpid () instead of wait4.

Although the OS will use predictable file descriptors in pipe2 (), your program
should use variables and not constants, e.g. calling close (3) would not be an
acceptable solution.

Use the execvp () frontend for the execve () system call. Make sure you imple-
ment argument passing correctly. dpipe should first invoke the program whose
name is given as its first argument, without passing any additional arguments to
it. Then it should interpret the second argument as the name of a second program
and pass the third argument as the first argument to the second program, the fourth
argument as the second, and so on. It is customary to set argv [0] to the name of
the program itself, and your invocations of execvp () should do the same. Hint:
it is possible to achieve this without creating a complete copy of the argv[] ar-
ray passed to dpipe’s main program by crafting a NULL-terminated subarray with
careful pointer manipulation.

If done correctly, the strace output for the relevant system calls H in your dpipe-
ABC implementation must be identical to the output obtained from the provided
dpipe-ABC; in fact, this is what the autograder software will check. Note that the
autograder will use examples other than gnetcaté.

%these include the pipe2, clone, and wait-related calls, as well as the file descriptor-related calls for the
file descriptors you create, manipulate, and close. You may find that your code and the provided dpipe
executable’s traces differ before and after those those calls, due to differences in the initialization portion.

(CS3214 Fall 2025 Exercise 1

Important: even though the relative order of some of the system calls is not impor-
tant for the correct functioning of dpipe, your assigned variant of dpipe will have a
specific ordering your submission must reproduce to obtain full credit.

Make sure that your dpipe-ABC does not return to the prompt prematurely, or fails
to return to the prompt after its children have exited.

Important: We will use the compiler switches -0 -Wall -Werror when compil-
ing your program. If you compile without these switches, and any warnings occur
in your code, you run the risk of failing our autograding scripts.

