(CS3214 Fall 2025 Exercise 0

Due Date: see website

In this class, you are required to have familiarity with Unix commands and Unix pro-
gramming environments. The first part of this exercise is a review to make sure you are
comfortable in our Unix environment. The second part relates to the use of basic com-
mand line and standard 1/O facilities from an application’s developer perspective. The
third part focuses on the difference between byte and character streams, which is an im-
portant and often confusing topic of high practical relevance.

1 Using Linux

It is crucial that everybody become productive using a Unix command line, even if the
computer you are using daily is not a Unix machine. Working on the command line
requires working knowledge of a shell such as bash, zsh, or fish, but it also requires an
understanding of the most common system commands and how the shell interacts with
these commands and with user programs.

* Remote Terminal Access. Make sure your personal machine has an ssh client pro-
gram installed. Set your machine up for public key authentication when logging on
to rlogin.cs.vt.edu. The exact way to do this will depend on your personal comput-
ing environment; on Unix (and also Windows), you would use ssh-keygen to create
akey, e.g., ssh-keygen -t ed255109.

There is also an web interface provided by the department that allows you to create
a key pair at https://admin.cs.vt.edu/my-ssh-keys/. In this case, Tech-
staff will create a private key for you, and thus you will not be able to maintain
continuous possession of the private key from its inception. Remember that your
private key represents you, and anyone who can access it can impersonate you as
far as accounts go where you have placed the matching public key. This means you
should use this key pair only for your SLO/CS account and nowhere else.

At the end of this step, you should be able to ssh into rlogin without having to type
a password from your personal computing device.

¢ Command-line Editing. Make sure you know how to use the command line editing
facilities of your shell. For bash users, which most of you are by default, examine the
effect of the following keys when editing: 'd, TAB, a, e, 1, k, and w. Then memorize
these keystrokes, making them part of your finger memory.

Examine the effect of the following keys when you invoke a program: c, s, q (x
stands for Ctrl-x.)

¢ Shell Customization. Customize your shell and create a custom prompt and any
aliases you may need. A custom prompt typically includes the name of the machine
you're on and at least part of the pathname of the shell’s current directory as when
setting PS1 to [\u@\h \W]\$

https://admin.cs.vt.edu/my-ssh-keys/

(CS3214 Fall 2025 Exercise 0

¢ Terminal Editors. Make sure you know how to use at least one command line edi-
tor, such as vim, nano, pico, or emacs. We recommend vim, an editor that according
to instructors at MIT |“can match the speed at which you think.”

* Visual Studio Code. Many students set up a remote environment that allows them
to use an IDE on their computer. Notably, Microsoft’s Visual Studio Code provides
an extension that provides a remote environment within the IDE that is well inte-
grated. Although not mandatory, we highly recommend that you do this as well.
The TAs will share instructions on how to do that. (Unfortunately, some of the
keystrokes normally used for command-line editing are overridden by default in
the VSCode Remote SSH extension.)

We will skip a quiz on this topic this semester, but we do ask that everyone who is not
comfortable with their setup that allows them to use rlogin remotely work with teaching
staff.

For this semester, we ask that you add ~cs3214/bin to your PATH variable via your
~/ .bash_profile file. To check that you've done this correctly, type:

S am I set up for CS32147

It should say that you are. Note that properly testing any changes made to your shell
initialization files require that you completely log out and log back in. If using vscode,
this may require killing the vscode remote server via a command in your Ul For more
background, read the section on bash setup in the FAQ.

Submit a screenshot that shows your customized prompt and the output of this com-
mand. To be considered set up correctly, your shell must both find the am command and
your environment must pass the checks this script does, and both must be shown in the
screenshot. Make also sure your customized prompt is visible in the screenshot and meets
our requirements.

2 Understanding Command Line Arguments and Standard
I/O in Unix

In the past, we observed that some students coming into CS 3214 did not understand
how programs access their command line arguments and how they make use of the stan-
dard input/output facilities, which present one of the basic abstractions provided by an
operating system. For instance, some students came with the mistaken impression that
“standard input” and “standard output” always represent input or output from/to some
kind of “console.”

https://missing.csail.mit.edu/2020/editors/
https://courses.cs.vt.edu/cs3214/fall2025/questions/bashsetup.html

(CS3214 Fall 2025 Exercise 0

Application Side Note. Deep knowledge of Unix is an absolute prerequisite for any-
one wanting to learn or work with containers. As an example, consider this excerpt
[link] of a script used to set up the container in which this semester’s Discourse server
runs:

run_image="‘cat S$config_file | $docker_path run S$Suser_args \
—-—rm -1 -a stdin —-a stdout $image ruby -e \
"require ’'yaml’; puts YAML.load(STDIN.readlines.join) [’'run_image’]""

This command sets a variable run_image to contain the data produced by the stan-
dard output stream that results from running the pipeline that is enclosed in back-
quotes. This pipeline consists of 2 commands: the command cat, which is given
1 argument (taken from the value of $config_file) and whose standard out-
put is “piped” into the command given by the $docker_path variable (probably
docker), which is invoked with 12 arguments, the last one being a Ruby program
that will be run inside the container, but which can access as its standard input
(STDIN) the data written to cat’s standard output. Being able to understand what
commands like this one do is a motivation for this exercise (and hopefully, the fol-
lowing exercise and project will provide an even deeper understanding).

To practice this knowledge, you will write multiple versions of a C program that concate-
nates a combination of given files and/or its standard input stream to its standard output
stream. The exact specification is as follows.

The first version of your program should be called concatenate.c.

When compiled and invoked without arguments, it should copy the content of its stan-
dard input stream to its standard output stream. “Standard input” and “standard output”
are standard streams that are set up by a control program that starts your program (often,
the control program is a shell).

When invoked with arguments, it should process the arguments in order. Each argument
should be treated as the name of a file, with one exception noted below. These files should
be opened and their content should be written to the standard output stream, in the order
in which they are listed on the command line. The argument - (a single hyphen) consti-
tutes an exception and is to be treated differently. If it is given then the program should
read and output the content of its standard input stream instead in this place. You may
assume that at most one - is provided as part of your program’s arguments.

If any of the files whose names are given on the command line do not exist, the program’s
behavior is undefined. Being “undefined” is a fancy way of saying that your program
does not need to implement any checks or remedies for user errors such as specifying
non-existing files for the purposes of this small exercise.

Just because programs can interact with their standard input stream in a way that ab-
stracts away the concrete nature of the input stream does not mean that it is impossible
to figure out what kind of stream it is. In addition to copying the contents of its standard
input stream and/or provided files, your program should also output the type of each
stream that it is processing, in order. This information should be sent to the standard
error stream. When processing a file listed on the command line, it should output the

3

https://github.com/discourse/discourse_docker/blob/990519e2373ec32055a7742a407e81f4bd606ed4/launcher#L498-L499
https://en.wikipedia.org/wiki/Standard_streams

(CS3214 Fall 2025 Exercise 0

provided name, followed by one of the following
* is a regular file if the stream refers to a regular file
* is a pipe if the stream refers to a pipe
®* is a character device if the stream refers to a character device
e is something else otherwise.
Examples are shown below:

$./concatenate
standard input is a character device
abc <- I typed this
abc <- your program would output this
"D <- I typed this, it won’t appear on the terminal
$./concatenate concatenate.c | wc
concatenate.c is a regular file

37 118 957
$./concatenate < concatenate.c | wc
standard input is a regular file

37 118 957
S cat concatenate.c | ./concatenate | wc
standard input is a pipe

37 118 957

As you can see, my C implementation is only 37 lines.

2.1 Variant 1: £fgetc/fputc

concatenate. c should use the functions fgetc and fputc for input and output, re-
spectively, which are part of C’s stdio libraryﬂ You should make use of the fstat (2)
system call (man page) to figure out what kind of stream is connected to the program’s
standard input. Hint: use the st_mode field. You may use the script test-concat.sh
to test your code.

2.2 Variant 2: fread/fwrite

Now implement this program using the fread (3) and fwrite (3) functions, using a
buffer size of 8192. Name the resulting file concatenate-fread.c.

2.3 Variant 3: Low-level I/O: read/write

Both fread and fwrite are C library functions that are implemented on top of
the underlying read(2) and write (2) system calls. Variant 3 of your program

cppreference.com has a full reference of the C library at https:/ /en.cppreference.com/w/c/header.
Note that some particularly unsafe string functions are banned in C53214.

4

https://man7.org/linux/man-pages/man2/lstat.2.html
https://en.cppreference.com/w/c/header

(CS3214 Fall 2025 Exercise 0

should use these calls directly. Make sure that you also do not use fopen (3), re-
placing it with open (2) instead. Use a buffer size of 8192. Name the resulting file
concatenate-sysread.c.

2.4 Variant 4: Low-level I/O: read/write with small buffers

Change the buffer size in your code low-level I/O code from 8192 to 16, that is,
do not input (or output) more than 16 bytes at a time. Name the resulting file
concatenate—-sysread-small.c.

2.5 Experiment

Design a small experiment to compare the performance of these 4 programs. Prepare
some input of at least 100MB; you may connect the program’s standard output to a
dummy sink (/dev/null).

For simplicity, you may use the t ime bash builtin to find the total real time spent running
the program, as well as the amount of time the program spent running in user mode and
kernel, respectively.

Report all times and include an interpretation of the results.

3 Understanding how to access the Standard Input and
Output Streams in your Preferred Language

Standard input and output are not concepts that are specific to the use of C. Choose a
language of your choice thatis not C (e.g. C++, Go, Ruby, Rust, Java, Python 3, JavaScript,
etc.) and implement the above concatenate program in this languagef| You may use
all functions that are part of the language’s standard library, but not functionality that
requires the installation of extra librariesﬂ

If your language cannot be compiled into an executable, and also cannot be executed
directly by an interpreter using the Shebang/Hash-bang convention, you will need to
create a wrapper script so you can test itﬁ This wrapper script is required for Java, it
should invoke your program, passing any command line arguments it receives to it.

2If you choose languages that embed C, such as C++ or Rust, you must use those parts of C++’s or Rust’s
standard library that do not overlap with C’s. So you can’t use : : fread in C++ or the 1ibc crate in Rust.

3Depending on the language, what constitutes part of a language and what is “external” can be some-
what fuzzy: for the purposes of this exercise, the deciding criterion will be the ability to access this func-
tionality without requiring additional installation steps. For example, in Java, you may use all of java.
but not Apache Commons or Guava. In Javascript, you may use functionality that is provided by node s,
but not functionality that requires the installation of npm packages. Similar calls can be made for other
languages.

“Don’t submit the wrapper script though, our grader will identify the language and create its own script
when necessary.

https://en.wikipedia.org/wiki/Shebang_(Unix)

(CS3214 Fall 2025 Exercise 0

As described in the Bash Hacker’s Wiki you can use the "$@" shorthand to refer to the
script’s arguments, which are passed onto the Java program:

#!/bin/sh
save this file as wrap-java.sh

java -Xmx120m Concatenate "s$@"

Side Note. Some of you may never have invoked a Java program on the command
line. It is done by compiling the Java code using javac Concatenate. java fol-
lowed by java Concatenate ... to start the compiled program, where . ..
stands for the arguments being passed to it. Recent JDK versions permit the combi-
nation of these steps by supporting the invocation java Concatenate.java ...,
essentially accommodating what used to be the frequent beginner’s mistake of ask-
ing the JVM to run not-yet-compiled source code.

You should again use test-concat.sh to test by passing the name of your script or
executable as an argument.

Java is an exception here: although the JVM is an ordinary Unix process, it makes certain
assumptions about how much memory is available to it, which means it will not run well
when this memory is limited from the outside. For Java implementations, you should run
the test with:

SKIP_MEMORY_LIMIT=yes ./test-concat.sh ./wrap-java.sh

and make sure that the memory your program uses is instead limited in wrap-java.sh
via the -Xmx flag.

What does SKIP_MEMORY LIMIT=yes do? Whenever you prefix a command you
type in bash with ENVVAR=value, bash will set an environment variable ENVVAR
and give it the specific value before starting the program that follows. This vari-
able is temporary in that it is in effect only during the execution of the command
the user is running. This is a common way to influence the execution of programs
without requiring other options such as configuration files or command line param-
eters. The programs so controlled will use the getenv () function to retrieve the
value of these variables. If the program being run is a shell script, as in the case of
test-concat. sh, they can access it directly.

You are encouraged to read test-concat . sh as it provides more examples of how
to run programs on the command line. It also shows the different ways in which a
shell can control a program’s standard input streams.

Hint: most higher-level languages allow compact implementations of these tasks. For
instance, a Python 3 implementation is 22 lines long.

Efficiency. You should use buffered forms of input and output in order to reduce the
number of system calls your program makes. The autograder will run your program
under a suitable timeout that is designed to eliminate submissions that lack buffering.

https://wiki.bash-hackers.org/scripting/posparams#all_positional_parameters

(CS3214 Fall 2025 Exercise 0

Use of Byte Streams. For both parts2land 3 your program must not attempt to interpret
the content of the streams it reads and writes in any way. In other words, it should output
the bytes (octets) that appear in the input as they appear, without making assumptions
or processing them in any way. This includes the possible occurrence of the byte value
0x00, which may occur any number of times in the input and must be copied into the
output.

Similarly, the byte value 0x0A (aka LF, or LINEFEED character) may occur any number
of times. Your program should not assign special significance to either of them, so do not
assume (a) that data read can be represented as zero-terminated C-style strings, and (b)
do not assume that the input can be broken into lines efficiently. (The worst case input
will be a sequence that doesn’t contain any LF characters at all.)

Avoid Character-based Input Routines. Many real-world programs process input that
is thought to represent characters, which has contributed to the fact that the I/O libraries
of some higher-level languages default to the assumption that programmers will want
to input and/or output character streams in some valid encoding when accessing file
streams. Note that character streams are abstractions built on top of byte streams - at the
process/OS boundary all I/O is byte-based (this is true for at least the vast majority of
contemporary environments).

The most commonly used character set today is the Unicode character set, and the en-
coding that is most commonly used is UTF-8. For instance, nearly all web content uses
this character set and encoding. In the UTF-8 encoding, the unicode character U+263A is
encoded as a 3-byte sequence 0xE2 0x98 0xBA. While any sequence of Unicode charac-
ters can be encoded into a sequence of bytes, the opposite is not true: not every sequence
of bytes represents a valid encoding of some characters.[]

For all implementations of concatenate you're being asked to implement, do not assume
that the input represents characters in any valid encoding. Specifically, the input data
may not represent a valid UTF-8 encoding, and therefore, attempts to interpret it as UTF-
8 data and decode it will fail for some tests, resulting in exceptions and/or data corrup-
tion. This means that you must be careful to avoid the default implementation in those
languages that default to imposing a character stream abstraction, which include Python
3 and Java. Instead, you will need to examine their API and find the corresponding con-
structs that give you access to byte-based streams, which are sometimes referred to as
“binary” forms of input or output.

Finally, benchmark your program written in the language of your choice and compare the
results to the 4 C language versions you have created. Interpret your results.

What to submit:

Submit a tar file with your answers, containing the files:

>For those wanting to learn more about the rationale behind UTF-8, I recommend The history of UTF-8
as told by Rob Pike which describes how Ken Thompson invented UTEF-8 in one evening and how they
together built the first system-wide implementation in less than a week.

http://doc.cat-v.org/bell_labs/utf-8_history
http://doc.cat-v.org/bell_labs/utf-8_history

(CS3214 Fall 2025 Exercise 0

a png file readyprompt .png with the screenshot that shows you're ready for
CS3214.

¢ aCfile concatenate. c containing your implementation for part
* aCfile concatenate-fread. c containing your implementation for
e aCfile concatenate-sysread. c containing your implementation for

* a C file concatenate-sysread-small.c containing your implementation

for

* afile concatenate.? with a suitable suffix containing your implementation for
part 3|in another language,

¢ a file experiment .md with the results of your experiments. This file should use
markdown. Make sure you include all 5 versions in your discussion.

Do not submit compiled executables.

Hint: when preparing your submission, avoid the following mistake. To produce a tar
file to submit, run

tar cvf exOsubmission.tar concatenate.c ...
where in place of the dots you put the names of the files containing your high-level lan-

guage implementations. This will create a file exOsubmission.tazf|as an archive con-
taining concatenate.c, and so on.

Don’t do

tar cvf concatenate.c ...

Because that would create an archive concatenate.c containing the remaining
tiles you specify in the process, and would, without warning, clobber the existing
concatenate.c file you've just spent time creating.

%the name you choose doesn’t actually matter to our submission system

8

	Using Linux
	Understanding Command Line Arguments and Standard I/O in Unix
	Variant 1: fgetc/fputc
	Variant 2: fread/fwrite
	Variant 3: Low-level I/O: read/write
	Variant 4: Low-level I/O: read/write with small buffers
	Experiment

	Understanding how to access the Standard Input and Output Streams in your Preferred Language

