
CS 3214 Fall 2025 Test 2 Solutions

October 30, 2025

Contents
1 Loading and Linking (32 pts) 2

1.1 Understanding Separate Compilation (24 pts) . 2
1.2 Understanding Linking (8 pts) . 4

2 Analyzing Programs for Data Races (16 pts) 5

3 The Monitor Pattern (22 pts) 7

4 MPSC (12 pts) 10

5 Deadlock and Performance (18 pts) 12
5.1 Deadlock (8 pts) . 12
5.2 Locking Performance (10 pts) . 12

1

CS 3214 Test 2 Solutions Fall 2025

1 Loading and Linking (32 pts)
1.1 Understanding Separate Compilation (24 pts)
Consider the following header file header.h:

int x = 0;
extern int y;
static double z;
extern void second_fun(int);

and the C source files lmain.c and lsecond.c:
// lmain.c // lsecond.c
#include "header.h"

int main()
{

z = 1.0;
y = (int)z;
second_fun(y);

}

#include "header.h"
#include <stdio.h>

void second_fun(int y)
{

printf("Second function called"
" x = %d, y = %d z = %f\n",
x, y, z);

}

a) (2 pts) Provide a command or commands to compile, but not link, both lmain.c and lsecond.c on
our rlogin machines.

gcc -c lmain.c lsecond.c
Also accepted was gcc -S lmain.c lsecond.c or separate invocations of gcc -c lmain.c
followed by gcc -c lsecond.c

b) (2 pts) What error messages, if any, will the compiler output?

The compiler will not output any error messages.

c) (2 pts) Which files will result from compiling these two source files based on the command you
provided?

The file lmain.o and lsecond.o were created.
(If you used gcc -S above, your answer here should be lmain.s and lsecond.s.

d) (4 pts) Which of the following represents the correct symbol table for the object module resulting
from compiling lmain.c? (Addresses were omitted.) Assume that the compiler will not emit common
symbols as per recent conventions. Check one of A, B, C, or D.

□ A □ B □ C □✓ D

T main
U second_fun
U y
U z

T main
U second_fun
C x
U y
b z

T main
T second_fun
B x
B y
b z

T main
U second_fun
B x
U y
b z

2

CS 3214 Test 2 Solutions Fall 2025

The program defines main as a function, x as a global symbol, z as a local symbol (both
BSS), and it declares and uses second_fun and y, but defines neither, hence the unresolved
U entry.

e) (4 pts) Which of the following represents the correct symbol table for the object module resulting
from compiling lsecond.c? (Addresses were omitted.) Check one of A, B, C, or D.

□ A □✓ B □ C □ D

U printf
T second_fun
U y
B x
b z

U printf
T second_fun
B x
b z

T second_fun
B x
b z

U printf
T second_fun
B x
U y

The program defines second_fun as a function, it defines x as a global symbol, z as a
local symbol (both BSS). It does not, however, reference y (note that the symbol y in
second_fun is a parameter, not a reference to a global variable.) Therefore, there is no U
y entry.

f) (2 pts) Provide the command to invoke the linker to produce a final executable which shall be called
lmain.

The command is gcc lmain.o lsecond.o -o lmain or gcc lmain.c lsecond.c -o lmain
If you answered gcc -S above, you should answer gcc lmain.c lsecond.c -o lmain
here.

g) (8 pts) Will invoking the linker command succeed in creating an executable? If you answer no,
describe which error message(s) the linker will output. If you answer yes, provide the output of the
program when it is run.

□ yes / □✓ no
You will get two errors:

• multiple definition of ‘x’
• undefined reference to ‘y‘

since ‘x‘ was defined in a header file that was included in two translation units, and ‘y‘ was
never defined in any translation unit.

3

CS 3214 Test 2 Solutions Fall 2025

1.2 Understanding Linking (8 pts)
Check if the following statements about compilation and linking are true or false.

a) Linking is a process that combines object and archive files in order to create executables or shared
object files (aka dynamic libraries).
□✓ true / □ false

b) Definitions of static functions produce global symbols, whereas the omission of the static modifier
produces local symbols.
□ true / □✓ false
It’s the other way around.

c) Statically linked executables are generally larger than dynamically linked executables for the same
program.
□✓ true / □ false

d) In the linker command line, changing the order of libraries and/or object files can affect the success
or failure of the linking process.
□✓ true / □ false

e) Position-independent code simplifies the creation of shared libraries by removing restrictions on where
in a virtual address space a library may be loaded.
□✓ true / □ false

f) Programs can rely on the relative order in which the global variables they define are allocated in
memory.
□ true / □✓ false
No, this is unspecified behavior, and typically not even implementation-defined.

g) Compilers are specific to languages such as C, C++, Go, or Rust, but linkers can process and combine
ELF object modules created by any compiled language.
□✓ true / □ false

h) Link-time optimization (or LTO) allows the inlining of functions even when the compiler did not
process a definition of a function when compiling the C code of the translation unit in which the
function was called.
□✓ true / □ false

4

CS 3214 Test 2 Solutions Fall 2025

2 Analyzing Programs for Data Races (16 pts)
Consider the following program:

1 #include <pthread.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <semaphore.h>
5 #include <stdbool.h>
6

7 // global state
8 pthread_mutex_t lock
9 = PTHREAD_MUTEX_INITIALIZER;

10 sem_t sem;
11 int ai;
12 int g;
13

14 static void *
15 first_thread(void *_unused)
16 {
17 pthread_mutex_lock(&lock);
18 g++;
19 pthread_mutex_unlock(&lock);
20 sem_wait(&sem);
21 ai = ai + g;
22 return NULL;
23 }
24

25 static void *
26 second_thread(void *_unused)
27 {
28 pthread_mutex_lock(&lock);
29 int gbefore = g++;
30 pthread_mutex_unlock(&lock);
31 ai = gbefore;
32 sem_post(&sem);
33 return NULL;
34 }

35 int main() {
36 sem_init(&sem, 0, 0);
37 pthread_t t[2];
38 void * (*func [2])(void*) = {
39 first_thread, second_thread
40 };
41

42 g = 40;
43 for (int i = 0; i < 2; i++)
44 pthread_create(&t[i], NULL,
45 func[i], NULL);
46

47 for (int i = 0; i < 2; i++)
48 pthread_join(t[i], NULL);
49 printf ("%d\n", g);
50 printf ("%d\n", ai);
51 return 0;
52 }

The C11 memory model defines a data race as follows:

When an evaluation of an expression writes to a memory location and another evaluation reads
or modifies the same memory location, the expressions are said to conflict. A program that has
two conflicting evaluations has a data race unless either

• both conflicting evaluations are atomic operations
• one of the conflicting evaluations happens-before another

If a data race occurs, the behavior of the program is undefined.

i) (4 pts) Consider variables ai and g defined on lines 10 and 11, respectively. For each of these
variables, list the line numbers that contain conflicting evaluations.

a) ai
Conflicting evaluations of ai occur on lines 21, 31, and 50

b) g
Conflicting evaluations of g occur on lines 18, 21, 29, 42, and 49

5

CS 3214 Test 2 Solutions Fall 2025

ii) (7 pts) For each variable that has conflicting evaluations, determine whether they constitute a data
race. If not, define the happens-before relationship between each conflicting evaluation. You may
use short-hand notation to refer to the type of happens-before relationship, i.e., (line number 1) –
(type of HB relationship) → (line number 2) . . .

a) ai
There is no data race on ai.
31 – (via semaphore post/wait) → 21 – (via thread join) → 50

b) g

There is no data race on g.
42 – (via thread create) → 18
42 – (via thread create) → 29
18 – (via unlock) → 29 or 29 – (via unlock) → 18

29 – (via semaphore post/wait) → 21
18 – (program order) → 21
21 – (via thread join) → 49

The following two diagrams show the possible HB relationships, depending on which thread
acquires the mutex first:

Graders: although there is a total of 9 possible HB relationships for parts a) and b),
assign full points (7 pts) if students correctly list at least 6 in total for parts a) and b).

iii) (5 pts) What are the possible outputs of this program?

Possible outputs of this program are 42 83 and 42 82 depending on whether the first or
the second thread acquires the mutex lock first. (In the first case, ai will be 41, in the
second case, ai will be 40 on line 21. g will always be 42.)

6

CS 3214 Test 2 Solutions Fall 2025

3 The Monitor Pattern (22 pts)
Monitors are supported (and mandatory) in some languages, but unfortunately, in the C/POSIX world,
monitor semantics must be achieved by careful and correct use of its constituents.

Consider the following variations on a program that uses 2 threads, one of which computes a random
number which the other then prints. All variations use the following main function and include appropriate
header files. All variations compile successfully without warnings.

1 int main() {
2 // start first and second thread in random order
3 pthread_t t[2];
4 void * (*func [2])(void*) = { first_thread, second_thread };
5 srand(getpid());
6 if (rand() % 2) {
7 func[0] = second_thread;
8 func[1] = first_thread;
9 }

10

11 for (int i = 0; i < 2; i++)
12 pthread_create(&t[i], NULL, func[i], NULL);
13

14 for (int i = 0; i < 2; i++)
15 pthread_join(t[i], NULL);
16 return 0;
17 }

a) Consider the following variation:

1 int coin_flip; // 0 or 1, heads or tails
2 bool coin_flip_done; // true if 'coin_flip' contains valid result
3 // protects coin_flip_done;
4 pthread_mutex_t coin_flip_done_lock = PTHREAD_MUTEX_INITIALIZER;
5

6 static void *
7 first_thread(void *_unused)
8 {
9 pthread_mutex_lock(&coin_flip_done_lock);

10 while (!coin_flip_done)
11 continue;
12

13 pthread_mutex_unlock(&coin_flip_done_lock);
14 printf("Coin flip result was %s\n", coin_flip ? "HEADS" : "TAILS");
15 return NULL;
16 }
17

18 static void *
19 second_thread(void *_unused)
20 {
21 coin_flip = rand() % 2;
22

23 pthread_mutex_lock(&coin_flip_done_lock);
24 coin_flip_done = true;
25 pthread_mutex_unlock(&coin_flip_done_lock);
26 return NULL;
27 }

i) (2 pts) Describe which part of the monitor pattern is missing!

7

CS 3214 Test 2 Solutions Fall 2025

A condition variable is missing
ii) (2 pts) What are the possible outputs of this program? If you believe the program may or will

not output anything, include this as an option.
The program may output HEADS, TAILS, or it may deadlock. (Deadlock occurs if
first_thread happens to acquire the lock first, preventing second_thread from en-
tering the critical section.)

b) Consider the following variation:

1 int coin_flip; // 0 or 1, heads or tails
2 _Atomic bool coin_flip_done; // true if 'coin_flip' contains valid result
3 pthread_cond_t coin_flip_done_cond = PTHREAD_COND_INITIALIZER;
4

5 static void *
6 first_thread(void *_unused)
7 {
8 pthread_mutex_t coin_lock = PTHREAD_MUTEX_INITIALIZER;
9 pthread_mutex_lock(&coin_lock);

10 while (!coin_flip_done)
11 pthread_cond_wait(&coin_flip_done_cond, &coin_lock);
12

13 pthread_mutex_unlock(&coin_lock);
14 printf("Coin flip result was %s\n", coin_flip ? "HEADS" : "TAILS");
15 return NULL;
16 }
17

18 static void *
19 second_thread(void *_unused)
20 {
21 pthread_mutex_t coin_lock = PTHREAD_MUTEX_INITIALIZER;
22 pthread_mutex_lock(&coin_lock);
23 coin_flip = rand() % 2;
24 coin_flip_done = true;
25 pthread_cond_signal(&coin_flip_done_cond);
26 pthread_mutex_unlock(&coin_lock);
27 return NULL;
28 }

i) (2 pts) Describe which part of the monitor pattern is missing!
The shared mutex (lock) is missing that protects entry to the monitor.
Note that although it appears that each thread acquires a lock and passes it to the
call to condition wait, it is not the same lock. Each thread creates its own lock, which
is completely ineffective. (If coin_flip_done weren’t atomic, this would result in
undefined behavior.)

ii) (2 pts) What are the possible outputs of this program? If you believe the program may or will
not output anything, include this as an option.

The program may output HEADS, TAILS, or it may deadlock due to a lost wakeup.
(Deadlock occurs since the checking of the state predicate is not atomic with respect
to the call to condition wait, which can lead to a “lost wakeup” situation where the
first thread see coin_flip_done false, commits to waiting, but the second thread has
signaled before it could reach the call to condition wait.)

c) Consider the following variation:

8

CS 3214 Test 2 Solutions Fall 2025

1 int coin_flip; // 0 or 1, heads or tails
2 pthread_mutex_t coin_flip_done_lock = PTHREAD_MUTEX_INITIALIZER;
3 pthread_cond_t coin_flip_done_cond = PTHREAD_COND_INITIALIZER;
4

5 static void *
6 first_thread(void *_unused)
7 {
8 pthread_mutex_lock(&coin_flip_done_lock);
9 pthread_cond_wait(&coin_flip_done_cond, &coin_flip_done_lock);

10 pthread_mutex_unlock(&coin_flip_done_lock);
11 printf("Coin flip result was %s\n", coin_flip ? "HEADS" : "TAILS");
12 return NULL;
13 }
14

15 static void *
16 second_thread(void *_unused)
17 {
18 pthread_mutex_lock(&coin_flip_done_lock);
19 coin_flip = rand() % 2;
20 pthread_cond_signal(&coin_flip_done_cond);
21 pthread_mutex_unlock(&coin_flip_done_lock);
22 return NULL;
23 }

i) (2 pts) Describe which part of the monitor pattern is missing!
The while loop checking the state predicate is missing.

ii) (2 pts) What are the possible outputs of this program? If you believe the program may or will
not output anything, include this as an option.

The program may output HEADS, TAILS, or it may deadlock if the second thread hap-
pens to acquire the monitor lock first and signals before the first thread calls condition
wait.

d) (10 pts) Finally, write a correct version of this program using the following provided definitions and
statements. You may not need all of them.

1 // use these statements, refer to them by number
2 _Atomic bool coin_flip_done;
3 bool coin_flip_done;
4 pthread_mutex_t coin_flip_done_lock = PTHREAD_MUTEX_INITIALIZER;
5 pthread_cond_t coin_flip_done_cond = PTHREAD_COND_INITIALIZER;
6 while (!coin_flip_done)
7 if (!coin_flip_done)
8 continue
9 coin_flip_done = true;

10 pthread_cond_signal(&coin_flip_done_cond);
11 pthread_cond_wait(&coin_flip_done_cond, &coin_flip_done_lock);
12 pthread_mutex_lock(&coin_flip_done_lock);
13 pthread_mutex_unlock(&coin_flip_done_lock);

Complete the program by writing in the numbers of the definitions and statements in the correct
order and correct place:

1 // add necessary definitions here
2 int coin_flip; // 0 or 1
3

4 bool coin_flip_done; // (3)

9

CS 3214 Test 2 Solutions Fall 2025

5 pthread_mutex_t coin_flip_done_lock = PTHREAD_MUTEX_INITIALIZER; // (4)
6 pthread_cond_t coin_flip_done_cond = PTHREAD_COND_INITIALIZER; // (5)
7

8 static void *
9 first_thread(void *_unused)

10 {
11 pthread_mutex_lock(&coin_flip_done_lock); // (12)
12 while (!coin_flip_done) // (6)
13 pthread_cond_wait(&coin_flip_done_cond, &coin_flip_done_lock); // (11)
14

15 pthread_mutex_unlock(&coin_flip_done_lock); // (13)
16 printf("Coin flip result was %s\n",
17 coin_flip ? "HEADS" : "TAILS");
18 return NULL;
19 }
20

21 static void *
22 second_thread(void *_unused)
23 {
24 coin_flip = rand() % 2;
25

26 pthread_mutex_lock(&coin_flip_done_lock); // (12)
27 coin_flip_done = true; // (9)
28 pthread_cond_signal(&coin_flip_done_cond); // (10)
29 pthread_mutex_unlock(&coin_flip_done_lock); // (13)
30

31 return NULL;
32 }

See numbers above. The second thread could also acquire the lock before assigning
coin_flip, and it would also be ok to signal without the lock (switch (10) and (13)).
Either the code or the numbers needed to be provided. We also accepted (2) instead of
(3), even though the use of an _Atomic is unnecessary and non-idiomatic, but note that
using an atomic does not remove the need to lock for the second thread.

4 MPSC (12 pts)
Consider the following program written using the multi-producer, single-consumer channel you imple-
mented in exercise 3.

10

CS 3214 Test 2 Solutions Fall 2025

#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>

#include "mpsc.h"

struct txrx {
struct mpsc_sender *tx1;
struct mpsc_sender *tx2;
struct mpsc_receiver *rx;
char id;

};

static void *
thread_A(void *_txrx)
{

struct txrx *p = _txrx;
for (int i = 0; i < 3; i++)

mpsc_send(p->tx1, i);
mpsc_drop_sender(p->tx1);
return NULL;

}

static void *
thread_B(void *_txrx)
{

struct txrx *p = _txrx;
uintptr_t a;
while (mpsc_recv(p->rx, &a) == RECV_SUCCESS)
{

mpsc_send(p->tx1, a);
mpsc_send(p->tx2, a);

}
mpsc_drop_sender(p->tx1);
mpsc_drop_sender(p->tx2);
return NULL;

}

static void *
thread_C(void *_txrx)
{

struct txrx *p = _txrx;
uintptr_t rval;
while (mpsc_recv(p->rx, &rval) == RECV_SUCCESS)

printf("%c%ld ", p->id, rval);

return NULL;
}

int main()
{

struct mpsc_channel ch[3];
for (int i = 0; i < 3; i++)

mpsc_sync_channel(/* CHANNEL_SIZE= */10,
ch + i);

#define N 4
pthread_t threads[N];
int i = 0;
struct txrx p1 = {

.tx1 = ch[0].sender,
};
pthread_create(&threads[i++], NULL,

thread_A, &p1);
struct txrx p3 = {

.tx1 = ch[1].sender,

.tx2 = ch[2].sender,

.rx = ch[0].receiver,
};
pthread_create(&threads[i++], NULL,

thread_B, &p3);
struct txrx p4 = {

.rx = ch[1].receiver,

.id = 'A',
};
pthread_create(&threads[i++], NULL,

thread_C, &p4);
struct txrx p5 = {

.rx = ch[2].receiver,

.id = 'B',
};
pthread_create(&threads[i++], NULL,

thread_C, &p5);

for (int i = 0; i < N; i++)
pthread_join(threads[i], NULL);

printf("\n");
}

Describe and count all possible outputs of this program (you may assume that each printf statement
is atomic).

Thread A sends integers 0, 1, and 2 to thread B, in this order. Thread B sends 0, 1, and 2 to
two instances of thread C, which will output A0, A1, A2, B0, B1, and B2 such that A0 A1 A2 and
B0 B1 B2 remain in order. Thus

(
6
3

)
= 20 different outputs are possible, such as A0 B0 A1 A2

B1 B2 but not A0 B1 A1 B0 A2 B2.

11

CS 3214 Test 2 Solutions Fall 2025

5 Deadlock and Performance (18 pts)
5.1 Deadlock (8 pts)
Consider the implementations of your p2 thread pool in stages 3 and 5. Discuss whether resource-related
deadlock could occur in your implementation. If so, explain why. If not, explain how you prevented it.

a) (4 pts) In stage 3 (work sharing, single lock, with helping implemented), resource-related deadlock
□ can / □✓ cannot occur, because

there can be no hold-and-wait with a single lock, removing one of the necessary Coffman
conditions.

b) (4 pts) In stage 5 (work stealing, single lock broken into multiple, helping implemented), resource-
related deadlock
□ can / □✓ cannot occur, because

only one lock is held at any time, again avoiding hold-and-wait.
This is true, at least, if you implemented the suggested design. If you didn’t you will need
to justify here how your design prevents deadlock, such as by enforcing a consistent locking
order that avoid circular waits.

5.2 Locking Performance (10 pts)

Fill in the blanks in the following paragraph. If multiple word choices meaningfully complete the paragraph,

we’ll accept any of them.

Mutexes are synchronization devices that are necessary to ensure correctness in multi-threaded pro-

grams. Without their proper use, programs could suffer from multiple concurrency-related defects, includ-

ing data races and atomicity violations.

However, mutexes incur costs, which can be roughly broken into direct and indirect costs. The indirect

cost include the loss of parallelism due to the serialization locks induce. Such serialization can lead to low

CPU utilization, particularly when threads spend a relatively large portion of their execution inside critical

sections protected by a lock.

To reduce this cost, programmers will redesign their data structures such that locks can be broken into

multiple, separate locks, each protecting only a subset of the shared data. However, this process can be

difficult, because doing so can increase the risk of deadlocks and atomicity violations.

In addition, using more locks may also increase the direct costs of locking. At a minimum, acquiring

an uncontended lock requires an atomic instruction which is about 17× more expensive than a L1 cache

hit. If the lock is contended, the calling thread must then enter the kernel to be placed into the BLOCKED

state. Typically, two context switches are required until the thread has returned and can continue.

12

	Loading and Linking (32 pts)
	Understanding Separate Compilation (24 pts)
	Understanding Linking (8 pts)

	Analyzing Programs for Data Races (16 pts)
	The Monitor Pattern (22 pts)
	MPSC (12 pts)
	Deadlock and Performance (18 pts)
	Deadlock (8 pts)
	Locking Performance (10 pts)

