(CS3214 Fall 2024 Project 2 - “A Fork-Join Framework”

Due: See website for due date. (Late days may be used.)

What to submit: Upload a tar ball using the p2 identifier that includes the following
tiles:

- partner. json with the SLO IDs in the format described for Project 1.

- threadpool.c with your code.

- threadpool.pdf with your project description. Use a suitable word processing pro-
gram to produce the PDF file.

We will be using the provided fjdriver.py file to test your code. Please see Section[5.3]
for more information.

1 Background

The last two decades have seen the widespread use of processors that support multiple
cores that can act as independent CPUs. Today, even processors used in smartphones con-
tain 4 or more cores. Software has been slow to catch up, despite calls for programming
models that make it easy to write scalable programs for multicore systems [1].

As a case study, consider the std: : async function that is part of the C++11 standard
The reference documentation on cppreference.com provides the example shown in Fig-
ure

This toy example sums up the elements of a vector, which here are initialized to 1, using
a recursive divide-and-conquer approach. At each level of recursion, the array is subdi-
vided into two equal parts, one of which is passed to std: :async to be executed in a
separate thread, whereas the other part is recursively performed by the calling thread.
std: :async returns a handle of type std: : future, which represents a reference to a
result of a computation that is executed asynchronously. When the computation’s result
is needed, a thread may invoke the future’s get () method. get () will return the result,
arranging for—or waiting for—its computation as necessary.

You will not need to learn C++ for this project, I am just using it as a motivating example

Created by G. Back (gback@cs.vt.edu) 1 Revision : 2.0 October 12,2024


http://en.cppreference.com/w/cpp/thread/async

(CS3214 Fall 2024 Project 2 - “A Fork-Join Framework”

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <future>

template <typename RAIter>
int parallel_sum(RAIter beg, RAIter end)
{

auto len = std::distance (beg, end);
if(len < 1000)
return std::accumulate (beg, end, 0);

RAIter mid = beg + len/2;
auto handle = std::async(std::launch::async,
parallel_ sum<RAIter>, mid, end);
int sum = parallel_sum(beg, mid);
return sum + handle.get ();

}

int main ()
{
std: :vector<int> v (100000000, 1);
std::cout << "The sum is " << parallel_sum(v.begin(), v.end())
<< "\n’;

}

Figure 1: A parallel sum implementation in C++11. This is a slightly modified version of
the example published at http://en.cppreference.com/w/cpp/thread/async. Instead of
10,000, this program is summing up a vector with 100,000,000 elements.

Compiling and running this program under g++ 11.5.0 one obtains the following output:

$ g++ —-pthread -02 cppasyncpsum.cc -0 cppasyncpsum

$ ./cppasyncpsum

terminate called after throwing an instance of ’std::system_error’
what () : Resource temporarily unavailable

Aborted (core dumped)

The reason for this failure is that C++11’s st d: : async is implemented by blindly spawn-
ing kernel-level threads (roughly 10° of them), without any regard to the amount of re-
sources used by those threadsf]

This small example motivates the need for frameworks that do better than spawning one
thread for each parallel task.

In this project, you will create a small fork /join framework that allows the parallel execu-
tion of divide-and-conquer algorithms such as the one shown in the example in Figure
in a resource-efficient manner. To that end, you will create a thread pool implementation
for dynamic task parallelism, focusing on the execution of so-called fork/join tasks. Your

2C++26 may include support for executors if P2300R10 makes its way through standardization.

Created by G. Back (gback@cs.vt.edu) 2 Revision : 2.0 October 12,2024


http://en.cppreference.com/w/cpp/thread/async
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2300r10.html

(CS3214 Fall 2024

Project 2 - “A Fork-Join Framework”

external submissions

Global Queue \\-> —[ ]
(FIFO) . /

¢ oop N
Worker 1

\gush A

¢ oop N\
Worker 2 pop

\push A

steal
Worker 3 -~
bottom top

Figure 2: A work stealing thread pool. Worker threads execute tasks by popping them
from the bottom of their deques. If they run out of work, they first attempt to dequeue
tasks from a global submission queue. Failing that, they attempt to steal tasks from the
top of other workers” deques. New tasks may be submitted externally to the global queue,
but tasks spawned during the execution of a task are pushed onto the bottom of executing

workers’ deques.

implementation should avoid excessive resource use in order to avoid crashes like the

one seen in this example.

2 Thread Pools and Futures

Your fork-join thread pool should implement the following API:

/ x %
* threadpool.h
*
* A work-stealing,

*/

fork—-join thread pool.

/ *
* Opaque forward declarations. The actual definitions of these
* types will be local to your threadpool.c implementation.
*/

struct thread_pool;

struct future;

/+ Create a new thread pool with no more than n threads.
x» If any of the threads cannot be created, print

* an error message and return NULL. x/
struct thread_pool x thread_pool_new(int nthreads);

Created by G. Back (gback@cs.vt.edu)

Revision : 2.0 October 12, 2024



(CS3214 Fall 2024 Project 2 - “A Fork-Join Framework”

Shutdown this thread pool in an orderly fashion.
Tasks that have been submitted but not executed may or
may not be executed.

L S e

*

Deallocate the thread pool object before returning.
*/
void thread_pool_shutdown_and_destroy (struct thread_pool x);

x A function pointer representing a ’fork/join’ task.

* Tasks are represented as a function pointer to a

* function.

* "pool’ - the thread pool instance in which this task

* executes

x 'data’ - a pointer to the data provided in thread_pool_submit
*

* Returns the result of its computation.
*/
typedef void * (x fork_join_task_t) (struct thread_pool *pool, void x data);

/ *

* Submit a fork join task to the thread pool and return a
* future. The returned future can be used in future_get ()
* to obtain the result.

* 'pool’ - the pool to which to submit

* "task’ - the task to be submitted.

* 'data’ - data to be passed to the task’s function

*

* Returns a future representing this computation.

*/

struct future x thread_pool_submit (
struct thread pool *pool,
fork_join_task_t task,
void * data);

/* Make sure that the thread pool has completed the execution
x» of the fork join task this future represents.
*

* Returns the value returned by this task.
*/

void x future_get (struct future x);

/+ Deallocate this future. Must be called after future_get () =/
void future_free (struct future x);

2.1 Work Stealing

There are at least two common ways in which multiple threads can share the execution of
dynamically created tasks: work sharing and work stealing. In a work sharing approach,
tasks are submitted to a single, central queue from which all threads remove tasks. The

Created by G. Back (gback@cs.vt.edu) 4 Revision : 2.0 October 12,2024



(CS3214 Fall 2024 Project 2 - “A Fork-Join Framework”

drawback of this approach is that this central queue can become a point of contention,
particularly for applications that create many small tasks.

Instead, a work stealing approach is recommended [2] which has been shown to lead to
better load balancing and lower synchronization requirements. In a work stealing pool,
each worker thread maintains its own local queue of tasks, as shown in Figure 2| Each
queue is a double-ended queue (deque) which allows insertion and removal from both
the top and the bottom. When a task run by a worker spawns a new task, it is added
(pushed) to the bottom of that worker’s queue. Workers execute tasks by popping them
from the bottom, thus following a LIFO order. If a worker runs out of tasks, it checks a
global submission queue for tasks. If a task can be found in it, it is executed. Otherwise,
the worker attempts to steal tasks to work on from the top of other threads” queues.

In this assignment, you are asked to implement a work stealing thread pool. Since work
stealing is purely a performance optimization, you may for reduced credit (corresponding
to a B letter grade) implement a work sharing approach.

2.2 Helping

A naive attempt at implementing future_get would have the calling thread block if
the task associated with that future has not yet been computed. “Blocking” here means
to wait on a synchronization device such as a condition variable or semaphore until it
is signaled by the thread computing the future. However, this approach risks thread
starvation: if a worker thread blocks while attempting to call future_get it is easily
possible for all worker threads to be blocked on futures, leading to a deadlock because no
worker threads are available to compute the tasks on which the workers are blocked!

Instead, worker threads that attempt to resolve a future that has not yet been computed
must help in its execution. If the future’s task has not yet started executing, the worker
should steal it and execute it itself. If it has started executing, the worker has two choices:
it could wait for it to finish, or it could help by executing tasks spawned by the task being
joined, hoping to speed up its completion.

Note that we have used the word “help” in two contexts now: first, helping when an not-
yet-started task is being joined. This mode of helping, also referred to as inline execution,
is mandatory in order to avoid deadlock. Here, a thread “helps” themselves because no
one else is around to take on the task they’ve spawned.

Second, we have said that a worker that is trying to join a task that’s already in progress
because it was stolen by another thread may help by taking on tasks that the “thiet”
needs to complete in order to complete the stolen task. This mode of “helping” the thief
represents a policy decision that can improve performance, but it is not mandatory for a
functioning thread pool. f]

For the purposes of this assignment, we assume a fully-strict model as defined in [2]. A
tully-strict model requires that tasks join all tasks they spawn — in other words, every

3Therefore, you should consider implementing it only after you have a working implementation.

Created by G. Back (gback@cs.vt.edu) 5 Revision : 2.0 October 12, 2024



(CS3214 Fall 2024 Project 2 - “A Fork-Join Framework”

call to submit a task has a matching call to future_get () within the same function
invocation. In this sense, all tasks spawned by a task can be considered subtasks that need
to complete before the task completes (even though your thread pool implementation will
not need to keep track of which task is a subtask of which other task). All our tests will
be fully strict computations, which encompass a wide range of parallel computations.

Restricting ourselves to fully-strict computation for this project simplifies helping thiefs
because it is always safe for workers intending to help to steal any task as long as they
steal from the top of any other worker’s queue. Safety here refers to the absence of exe-
cution deadlock.

Note that in a fully-strict model, in combination with helping, worker threads that have
just finished a task will never be in a situation where they are looking for tasks on their
own queue: this is because any subtask spawned from a task they were working on will
be joined before that task returns. In this situation, the worker will either directly execute
that task via helping, or the task will have been stolen by some other worker. In no case
will a worker return from executing a task and find other, unfinished tasks on its queue.
(Recall that all tasks added to a worker thread’s queue are subtasks of a task the worker
was executing at the time.)

External threads must not help. Only worker threads should help when they encounter
not-yet-finished tasks. Do not let external threads help with tasks - these threads should
wait for a worker to complete a submitted task. This way, it becomes easier to tune the
pool’s concurrency level to match the number of physical processors or core dedicated to
the threadpool.

Thread pools should be good citizens. When no tasks have been submitted, your thread
pool should not consume significant CPU resources — rather, all worker threads should
be in the BLOCKED state.

3 Implementation

Except for constraints imposed by the API and resource availability, you have complete
freedom in how to implement your thread pool. Numerous strategies for stealing, help-
ing, blocking, and signaling are possible, each with different trade-offs.

You will need to design a synchronization strategy to protect the data structures you use,
such as flags representing the execution state of each tasks, the local queues, and the
global submission queue, and possibly others. You will need a signaling strategy so that
worker threads learn about the availability of tasks in the global queue or in other threads’
queues.

Created by G. Back (gback@cs.vt.edu) 6 Revision : 2.0 October 12,2024



(CS3214 Fall 2024 Project 2 - “A Fork-Join Framework”

3.1 Basic Strategy

A basic strategy would be to use locks, condition variables, and the provided list imple-
mentation (known to you from prior projects), which allows constant-time insertion and
removal of list elements and which can be used to implement a deque.

You will have to define private structures struct future and struct thread_pool
in threadpool.c. A future should store a pointer to the function to be called, any data
to be passed to that function, as well as the result (when available). You will have to
define appropriate variables to record the state of a future, such as whether its execution
has started, is in progress, or has completed, as well as which queue the future is in to
keep track of stealing.

A thread pool should keep track of a global submission queue, as well as of the worker
threads it has started. In the work stealing approach, each worker thread requires its own
queue. You will also need a flag to denote when the thread pool is shutting down.

You will need to create a static function that performs the core work of each worker
thread. You will pass this function to pthread.create (), along with an argument
(such as a pointer to a preallocated struct) allowing the thread to identify its position
in the worker pool and to obtain a reference to the pool itself.

thread_pool_submit(). You should allocate a new future in this function and submit it
to the pool. Since the same API is used for external submissions (from threads that are
not part of the pool) and internal submissions (from threads that are part of the pool),
you will need to use a thread-local variable to distinguish those cases. The thread local
variable could be used to quickly look up the information pertaining to the submitting
worker thread for internal submissions.

future get(). The calling thread may have to help in completing the future being joined,
as described in Section Helping is required for both work sharing and work stealing
approaches.

thread_pool _shutdown_and_destroy(). This function will shut down the thread pool. Al-
ready executing futures must complete; queued futures may or may not completef]

The calling thread must join all worker threads before returning. Do not use
pthread_cancel () because this function does not ensure that currently executing fu-
tures run to completion; instead, use a flag and an appropriate signaling strategy.

Upon destruction, a threadpool should deallocate all memory that was allocated on behalf
of the worker threads.

future free(). Frees the memory for a future instance allocated in
thread_pool_submit (). This function is called by the client. Do not call it in
your thread pool implementation.

“None of our tests will shut down the pool while there are outstanding tasks, that is, all externally
submitted tasks will have been joined.

Created by G. Back (gback@cs.vt.edu) 7 Revision : 2.0 October 12,2024



(CS3214 Fall 2024 Project 2 - “A Fork-Join Framework”

3.2 Implementation/Debugging Guide

Debugging Strategies. There are many pitfalls in multithreaded programming that can
result in bugs in your program, so it is important to know some debugging strategies.

* Do not run the test driver £ jdriver.py every time to test your program. You can
build your code in the “tests” directory and directly run the tests until they work.

* Use the available data race detection tools: Helgrind and DRD. To use Helgrind, run
your code with valgrind --tool=helgrind ... followed by the name of the
executable you would normally run. If you are not properly waiting for work on
your condition variable, it is possible that your program does not make progress un-
der Helgrind. You can identify this case by changing Helgrind’s internal scheduling
policy—add the --fair-sched=yes switch to valgrind’s options. If your program
makes progress under these settings, look for a bug that causes it to busy-wait.

* If your program appears “stuck” (does not make progress), then this can be the
case for multiple reasons. A common reason is deadlock where all threads are in
the BLOCKED state because they are waiting to either acquire a lock or waiting to
be signaled on a condition variable or semaphore. You can identify this case by
observing zero CPU utilization and using the “ps’ command to check the (Linux)
process state of your threads. If your program has deadlocked, then attach gdb (or
start the program under gdb) and examine the backtraces of all threads. Linux also
allows you to identify which thread holds a lock by examining its internals with
gdb’s print command. If your program has not deadlocked (or only some threads
have), you can still use the same strategy to obtain information about each thread’s
progress.

Locking Strategy. Make sure your design includes a clear strategy for mutual exclusion:
decide on which lock protects which instance of which data structure. Recall that one lock
can protect more than one piece of data. We recommend to start with a single global lock
(perhaps as part of the thread pool), which allows you to implement your logic, and once
your entire pool works, implement strategies to break that lock into multiple locks.

Signaling Strategy. You need to solve multiple signaling problems in this project: idle
worker threads must be signaled when either a global task is submitted or when a task
becomes available for stealing. To that end, you should use a single condition variable.
You can’t use more than one because a worker can wait on only one condition variable at
a time, but an idle worker needs to be woken up in both cases.

An additional signaling problem to solve involves when a thread can’t help (the thief)
and is blocked on an in-progress task. This thread will need to be signaled when said
task has completed, which can be accomplished using a condition variable or semaphore
associated with this task/future.

Created by G. Back (gback@cs.vt.edu) 8 Revision : 2.0 October 12,2024



(CS3214 Fall 2024 Project 2 - “A Fork-Join Framework”

Avoiding Atomicity Violations. Once you break the lock into multiple locks, a key chal-
lenge will be to ensure that updates to the state of a future are done atomically with
respect to the presence (or absence) of this future in its respective queue (global or per-
worker, depending on approach). You must avoid a situation in which a worker thread
scanning the global queue or a peer worker’s local queue “sees” a future in said queue, is
about to steal it, while the worker executing that task’s parent task attempts to join it and
execute it via the helping path. Only one thread must succeed in executing the task —if the
thread stealing the task executes it, the helping thread must either wait or engage in help-
ing the executor. If the helping thread executes it, the thread attempting to steal must act
as if the task had not been in the queue. In particular, if the thread helping wins this race,
the future may be completed and immediately after deallocated via future_free (), so
any pointers obtained by and stored in local variables of the worker thread may no longer
be valid if you allowed this situation to occur.

A recommended approach is to maintain the invariant that only tasks that are available
for execution are contained in any queue/list. Moving a task from the “new” to the “being
executed” state should be atomic with respect to the removal of this task from the queue
in which itis contained. Recall that 1ist_remove () modifies a linked list and thus needs
to be protected by the same mechanism as other operations on that list.

4 Optimization Guide

4.1 Per-future locks vs per-workqueue locks

A design that seems natural at first is to have locks for each future which protect a future’s
tields such as its state, and a lock for each worker that protects its fields such as the queue
of tasks this worker currently maintains. The problem with this design, however, is that it
makes it more difficult to avoid the atomicity violation described above. A worker thread
attempting to steal a task would lock the queue first and then lock the future it sees there.
Concurrently, a thread calling future_get would need to lock the future first, but it
cannot commit to running the future’s task unless it also has the lock that protects the
queue. It would need to acquire both, and moreover, after acquiring the queue lock it
would need to make sure that no worker has started the task. We do not recommend this
design because

* itis complex and error prone

¢ requires dealing with the difference in locking order to avoid deadlock (first in-
stance, by making the second lock acquisition a trylock with a suitable strategy on
failure).

* does not yield the highest performance because it involves 2 lock acquisitions on
the hot path that involves future_get.

Instead, we recommend a design where at least a future’s state field is protected not by
a lock associated with the future, but by the lock that protects the queue into which the

Created by G. Back (gback@cs.vt.edu) 9 Revision : 2.0 October 12,2024



(CS3214 Fall 2024 Project 2 - “A Fork-Join Framework”

future is inserted upon creation. Note that the lock protecting a future must be constant
and cannot change throughout the life of a future, so this lock must be continued to be
used even if the future is at some point stolenf]

4.2 Semaphores vs Condition Variables

We do not recommend that you use semaphores to signal your worker threads regarding
the availability of new tasks, because semaphores do not perform well in the presence of
large numbers of signals. Recall that signaling a semaphore entails incrementing its inter-
nal count, which requires an atomic read-modify-write operation on its internal state. In
the context of cache-coherent multiprocessors, this causes a transition into the “modified”
state in the accessing core’s cache, which causes a frequently updated semaphore to ping
pong between caches. By contrast, condition variables are implemented in a way that
handles the common case of signaling with no waiter present using the “shared” state
- the condition variable records if any waiters are present and does not require updat-
ing state when a call to pthread_cond_signal does not actually signal (unblock) any
threads. In addition, we recommend that you intentionally break the rule of signaling
with the lock held (which Helgrind otherwise warns you about) for this case, while still
making sure that your threadpool makes progress eventually.

You may still find semaphores useful, potentially, to implement waiting on individual
tasks.

4.3 Avoiding False Sharing

As you tune the performance of your implementation, be on the outlook for false sharing.
False sharing occurs when per-thread data structures are allocated within the same cache
line, which may happen, for instance, for neighboring array elements. A potential mistake
is to have a contiguous array of per-thread (per-worker) structures which are not meant
to be shared but allocated closely together. To avoid this, add padding to ensure they are
allocated in different cache lines. A cache line is 64 bytes long on our machines.

Additional information is posted on the class website, look for the performance optimiza-
tion guide.

5 Advanced Strategies/Extra Credit

Real-world fork/join implementations employ a number of optimizations designed to
minimize per-task synchronization overhead. For instance, a crucial optimization is to
speed up the common case of adding an element to or removing it from the bottom of
a worker’s queue. This optimization is possible because only the current worker may
add tasks to the queue, and only the current worker removes task from the bottom of its
queue. Stealers remove tasks from the top of the queue.

>As a side note, stealing a future will also not add it to the thief’s queue. Idle workers will steal only one
task at a time, and then continue to execute this task directly rather than adding it to their queue.

Created by G. Back (gback@cs.vt.edu) 10 Revision : 2.0 October 12, 2024



(CS3214 Fall 2024 Project 2 - “A Fork-Join Framework”

The first optimized implementations used the THE protocol, inspired by Djikstra’s mu-
tual exclusion algorithm [4], which is further described in [5] and [6]. Chase and Lev
presented a version of a work-stealing deque in [3], but their paper contains a number of
errors. A corrected version using C11 atomics is presented by Lé et al. [7], whose code
you may reuse for this projectﬂ

A second possible extension would be to support computations that are not fully-strict,
but still recursive. We define “recursive” such that it is possible to execute them on a
single worker thread using helping, even though they do not meet the definition of being
tully strict, perhaps because futures are passed among tasks before being joined.

If the computation is not fully-strict but still recursive, a deadlock situation could arise
where one worker steals a task that, in order to complete, requires the results of a task
whose execution has been started by the stealing thread, but not yet finished. Systems
such as CILK [5] avoid this by using a technique known as continuation stealing [8] in
which it is possible for other worker threads to continue (and complete) a spawning task.
However, continuation stealing requires compiler support since another thread would
need access to the task’s local variables. [| Systems that exploit child stealing, such as the
thread pool you are building in this assignment, have to impose constraints on stealing
for non-strict computations. A technique such as leap frogging [9] could be used, which
keeps track of the depth of each task in the computation graph and provides a rule that
allows or disallow stealing.

A third possible extension would be to support fully general acyclic computational
graphs. (The assumption of being acyclic is necessary because graphs with cyclic depen-
dencies are impossible to schedule.) Note that the given API is not suited for arbitrary
dependency DAGs in the presence of child stealing. To support arbitrary DAGs in the
absence of continuation stealing, an inverted control flow model must be used, perhaps
similar to that used in Java’s CountedCompleter classes. In other words, such tasks are
not joined, but rather a callback will be executed once they complete, allowing dependent
tasks to be scheduled.

If you implement any of these strategies, be sure to discuss it in your project description
so that TAs may award extra credit if warranted.

51 Grading

Grading will be based on a combination of factors, including

®Warning: these implementations are designed for more general frameworks, they do not represent
something you can simply drop in. Your implementation still must support global submissions, and it
must reclaim all memory it uses. This is not shown in the paper. Another key difference is that this imple-
mentation does not support removal of a future from the middle of a queue; you will need to think about
how this would affect the case where future_get would attempt to execute a task still on a queue. Do not
assume that tasks are joined in LIFO order.

Lastly, keep in mind that if you start adding C11 atomics, you’ll lose the ability to check for race condi-

tions with Helgrind /DRD because those tools do not understand the semantics implied by C11 atomics.

"Read Robison’s Primer [URL] to learn more about child vs continuation stealing.

Created by G. Back (gback@cs.vt.edu) 11 Revision : 2.0 October 12, 2024


https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/CountedCompleter.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3872.pdf

(CS3214 Fall 2024 Project 2 - “A Fork-Join Framework”

* Complexity. As noted above, you may either pursue a work stealing approach or,
for a simpler implementation, a work sharing approach.

¢ Correctness. We expect your code to produce the correct result. Since you are writ-
ing a concurrent program, the results may vary between runs if your implementa-
tion is incorrect; we will run your code multiple times and expect it to complete
correctly each time we run it. You should perform similar stress testing before sub-
mitting.

We also expect your code to be correct when we restrict the number of threads in
the pool to be 1, which requires a correct implementation of at least the first mode
of helping.

* Thread Safety. Your code must not contain race conditions. You should run the
code under the Helgrind race condition checker. If Helgrind flags any warnings,
you should address them. If you believe Helgrind’s warnings are spurious because
you are making use of advanced synchronization facilities or atomic variables that
trigger false positives, provide a rigorous proof.

* Speedup. For some of the benchmarks we provide, we will measure the speedup ob-
tained using your thread pool. The fjdriver.py script will compile your thread
pool, link it with our tests, and benchmark it. It will then prepare a file you may up-
load to the scoreboard (via £ jpostresults.py) to compare your results to those
of others. For development, we recommend that you keep your threadpool.c
tile inside the test s/ subfolder of your git repository — this way, you can build and
test with make until you are ready to use the test driver.

* Memory Reclamation. Multi-threaded programs are particularly prone to use-after-
free errors when one thread still holds a reference to an allocated block another
thread concurrently frees. For this reason, we will test that your threadpool deallo-
cates all memory when it is destroyed.

* Resource Use. Outside of dedicated high-performance computing (HPC) fork-join
implementations are required to coexist with other code and share computational

resources. One of our tests ensures that your pool does not consume resources when
idle.

The scoreboards are unofficial in that your final grade will be determined when the TAs
check and benchmark your code. However, we will use the scoreboard as a yardstick to
determine high-performing and low-performing implementations. In particular, if you
see that for a particular test some implementations provide speedup that is a multiple of
what your implementation provides, you may conclude that your implementation may
impose unnecessary serialization or have other bottleneck factors you should try to ad-
dress.

For grading, we will award credit for

* Meeting Minimum Requirements, which for this project include a working thread
pool implementation that can execute a specific set of parallel programs correctly.

Created by G. Back (gback@cs.vt.edu) 12 Revision : 2.0 October 12, 2024



(CS3214 Fall 2024 Project 2 - “A Fork-Join Framework”

fjdriver.py will flag whether you have met minimum requirements, but keep in
mind that during grading, we will run the required tests multiple times and expect
them to pass every time.

* Robustness, as measured by the ability to successfully and reliably complete a num-
ber of more complex applications within a test-specific timeout.

¢ Performance, as measured by the speedup obtained for more complex application-
s/tests. Note: to obtain a performance score, you must have met minimum func-
tionality requirements since there is little point in investigating the performance of
non-functional or buggy code. Before the project deadline, we will publish the spe-
cific performance requirements, which depend on the current semester’s hardware
and software environment; see scoreboard above.

5.2 Honor Code

As usual, all work submitted must be yours and be created from scratch by all group
members this semester. You may not reuse code from any implementations you may find
online without the instructor’s permission (and the permission of the author, if appli-
cable). If in doubt, you must ask. Otherwise, the collaboration policy described in the
syllabus applies.

5.3 Running Experiments

We will use the machines of the rlogin cluster for testing, so make sure your code runs
there when invoking fjdriver.py. These are currently dual-socket Intel Xeon CPUs
with 16 cores each, providing 32 cores total, which are presented to the OS as 64 CPUs (2
hyperthreads per core). Since hyperthreads typically do not add significant speedup, if
any, for CPU-bound tasks, we will not run with more than 32 threads.

Perform these experiments on an unloaded machine on the rlogin cluster. Unloaded
means that "“uptime’ should report a load average close to 0, so that all processors are
available for your experiment. Coordinate with other students by avoiding running your
benchmarks if you notice that other students are running theirs; use the forum or email
if necessary. fjdriver.py will output a message and wait if run on a machine with a
non-zero load average.

5.4 Additional Requirements.
* The use of git.cs.vt.edu is required as in project 1.

* The wupstream repository is https://git.cs.vt.edu/cs3214-staff/
threadlab

» After forking the repository, be sure to set access to private. Not doing so is a po-
tential honor code violation.

Created by G. Back (gback@cs.vt.edu) 13 Revision : 2.0 October 12, 2024


https://git.cs.vt.edu/cs3214-staff/threadlab
https://git.cs.vt.edu/cs3214-staff/threadlab

(CS3214 Fall 2024 Project 2 - “A Fork-Join Framework”

* To facilitate the automated grading of your git usage, please follow the following
rules:

— Do not rename the repo when you fork it.

— Do not create a git group; fork the repo under the namespace of one of the two
group members.

- Make sure that, once you have finished, your final product will be on the mas-
ter branch.

— Make sure that the git commit log on this branch shows the contributions of
both team partners under their CS pid.

- You may use branches during development, but if you do, make sure to merge
those branches. Don’t squash your commits when you do so.

— You must use git.cs.vt.edu and not any external git server.

All code for this project must be contained in threadpool . c, mainly to simplify
testing. We also believe that the complexity of this assignment, at least in its basic
form, should not necessitate the use of multiple source files.

Do not change any of the other files! (If you do, such changes will not be taken into
account when grading and you may you fail the grading process.)

Your code must compile without warnings. The Makefile enforces this via
—-Werror.

You should not define any global variables that become global symbols, and
you should not need to define any static variables with the exception of C11
_Thread_local thread-local variables.

You should not define any extern global functions other than the ones asked for -
use static functions as necessary.

The submission check script may impose additional requirements to simplify auto-
matic grading. Please work with teaching staff on any questions you encounter.

¢ Updates to these requirements may be posted on the website or the forum.

Good Luck!

References

[1] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel comput-
ing research: A view from berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

Created by G. Back (gback@cs.vt.edu) 14 Revision : 2.0 October 12, 2024



(CS3214 Fall 2024 Project 2 - “A Fork-Join Framework”

[2] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations
by work stealing. . ACM, 46(5):720-748, September 1999.

[3] David Chase and Yossi Lev. Dynamic circular work-stealing deque. In Proceedings of
the Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’05, pages 21-28, 2005.

[4] E. W. Dijkstra. Solution of a problem in concurrent programming control. Commun.
ACM, 8(9):569—, September 1965.

[5] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the
cilk-5 multithreaded language. In Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, PLDI "98, pages 212-223, 1998.

[6] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2008.

[7] Nhat Minh Lé, Antoniu Pop, Albert Cohen, and Francesco Zappa Nardelli. Cor-
rect and efficient work-stealing for weak memory models. In Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
"13, pages 69-80, 2013.

[8] Arch Robison. A primer on scheduling fork-join parallelism with work stealing, 2014.

[9] David B. Wagner and Bradley G. Calder. Leapfrogging: A portable technique for
implementing efficient futures. In Proceedings of the Fourth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP 93, pages 208-217, New York,
NY, USA, 1993. ACM.

Created by G. Back (gback@cs.vt.edu) 15 Revision : 2.0 October 12, 2024



	Background
	Thread Pools and Futures
	Work Stealing
	Helping

	Implementation
	Basic Strategy
	Implementation/Debugging Guide

	Optimization Guide
	Per-future locks vs per-workqueue locks
	Semaphores vs Condition Variables
	Avoiding False Sharing

	Advanced Strategies/Extra Credit
	Grading
	Honor Code
	Running Experiments
	Additional Requirements.


