
Personal Web and Video Server

CS 3214: Project 4

Help Session: Tuesday December 3rd, 2024 - 7:00pm EST 
Anthony Nguyen (anthonyn33@vt.edu)

mailto:anthonyn33@vt.edu


Topics
● Overview of a Web Server (prerequisite knowledge)

○ OSI, TCP, HTTP, JSON, JWT

● Basics / Getting Started

● Web Server Design

○ Serving Files

○ Authentication

○ Robustness, Performance, & Scalability

○ IPv6

○ MP4 Streaming

● Logistics and Grading

● Fuzzing!



Overview of Web Server

Prerequisite Knowledge:

OSI, TCP, HTTP, JSON, JWT



● Network “Stack”

OSI Model



● Slightly more modern approach

OSI Model

(your server is here)



Socket Programming

● Medium through which programs access network

● System calls:

○ socket(): create the socket file descriptor

○ bind(): assign to (local) address and port

○ listen(): start queueing incoming requests

○ accept(): connect to a client, return new socket

All sockets by default are blocking



● Hypertext Transfer Protocol

● Exists in the application layer of the OSI model

○ Normally takes place over TCP/IP connections

● Developed at CERN in 1989 and governed by W3C (World 

Wide Web Consortium)

● Request and Response messages use verbiage to denote 

intent

○ GET, POST, PUT, DELETE

○ Stateless

HTTP



HTTP Requests

Version 1.1 requests are structured as follows:

POST /index.html HTTP/1.1

Host: localhost:12345

User-Agent: curl/7.81.0

Accept: text/html

Content-Type: application/json

Content-Length: 67

<67 bytes of data>

<method> <target> <version>

<header name>: <header value>

<blank line: CRLF> ("\r\n")

<message body>



HTTP Responses

Version 1.1 responses are structured as follows:

HTTP/1.1 200 OK

Accept-Ranges: bytes

Server: CS3214-Personal-Server

Content-Type: text/html

Content-Encoding: UTF-8

Content-Length: 3968

<contents of index.html>

<version> <response code>

<header name>: <header value>

<blank line: CRLF> ("\r\n")

<message body>



● Each line ends in:

○ CR: carriage return, \r
○ LF: line feed, \n

● Has version and status

● Optional header fields

● Blank CRLF, then message content (if any)

● HTTP status codes

HTTP Standard



JSON

Key, value store in a well-defined format

{

"a": "Example text",

"b": 0,

"c": [1, 2, 3, 4],

"d": {

"a": [],

"b": "Hello world"

}

}

“Javascript Object Notation”



● JSON Web Tokens are an open, industry 

standard RFC 7519 method for representing claims 

securely between two parties

● Debugged on main website: https://jwt.io

● Three parts:

○ Header

○ Payload

○ Signature

JSON Web Tokens

https://tools.ietf.org/html/rfc7519
https://jwt.io/


Encoded JWT token is delimited by dots

Example JWT

eyJ0eXAiOiJKV1QiLCJhbGciOi

JIUzI1NiJ9.eyJleHAiOjE2OTc

yNzE2MDAsImlhdCI6MTY5NzE4N

TIwMCwic3ViIjoidXNlcjIwMjM

ifQ.qtaLIlrQ23PemNtCeEMOla

P3vaWtfXbYJQfWEzbPy30

{

"typ": "JWT",

"alg": "HS256"

}

{

"exp": 1697271600,

"iat": 1697185200,

"sub": "user2023"

}

HMACSHA256 signature

You’ll 

see this 

later!



Basics / Getting Started



● Fork / clone the repo

○ Set to private!

● Use the provided./install-dependencies.sh to set 

up the project libraries

● Build the Svelte frontend & add some videos

○ Make sure npm and node are ones in ~cs3214/bin!

Getting Started

$ git clone <your fork of cs3214-staff/pserv.git>

$ cd pserv && ./install-dependencies.sh

$ cd svelte-app && npm install && npm run build

$ cd ../tests && ./build.sh

$ cd ../src && make

https://kit.svelte.dev/
https://git.cs.vt.edu/cs3214-staff/pserv.git


● Understand the code

○ The front-end (Svlete App), files, etc. is handled for you

● What do we write?

○ Any files you like, modifying http.c heavily
○ Hint: You’re only messing with 4 files! 

● Handle

○ Authentication

○ IPv4 and IPv6 dual support

○ HTML5 Fallback

○ Multi-client support

○ MP4 streaming

Getting Started



● Base code already supports:

○ HTTP request parsing,

○ HTTP response building,

○ File mime-type guessing,

○ Serving one client at a time.

Alright, then where do I start?

● Get a feel for static file serving first (GET request 

to /something.txt).

● Start with minimum requirements (200 OK response to GET 

/api/login, multiple simultaneous connections) .

● Move to IPv6 support, then authentication functionality.

Provided Base Code



● Base code parses request headers into structs (think 

Project 1)

● The information is inside a buffer (struct bufio)

● http_process_headers processes it and stores important 

info in struct http_transaction

● You should store extra information such as:
○ Authentication token
○ Request range
○ Content Type

● Store as an offset or value? Up to you!

HTTP Transaction Struct



● Already supported for you!

● Supports the following program arguments:

○ -p <port number> defines the port to bind()

○ -R <path> defines the server root to use

○ -a enables HTML5 fallback

(... plus a few more!)

Parsing Arguments



● Use SSH tunneling

On local machine:

(if connecting to a specific host, use <host>.rlogin in place of localhost)

On rlogin, start server normally:

Open browser to localhost:<port>

Testing in browser

$ ssh –L <port>:localhost:<port> <pid>@rlogin.cs.vt.edu

$ ./server –p <port> -R <root data dir>



Demo

Getting started
Common pitfalls



Web Server Design

Authentication & Higher-Level Design (and curl)



● Serve any file in the root directory

○ Be mindful of security vulnerabilities in the provided path 
(what about ‘.’ and ‘..’?)

Serving Static Files

GET /hello.txt

Hello world!

GET /../../private/passwords.txt

Client asks for the 

contents of hello.txt

Server opens hello.txt 

and responds with its 

contents and type.

text/plain



Authentication

POST /api/login

GET /private/secure.txt

{"exp":1697271600,"iat":1697185200,"sub":"user2023"}

This file is secure!

Client supplies 

correct login 

information

Server returns 

authentication 

token

Client supplies 

token in a cookie

Server looks at 

cookie, verifies the 

token, and provides 

the private file

application/json

text/plain



● Only need to handle a single user:

● Hardwiring credentials in source code is often bad practice.

● Hard-coding will not pass testing! 

● The autograder supplies environment variables:
○ USER_NAME
○ USER_PASS
○ SECRET

● Use env to supply these to the unit tests.

Auth. Credentials

{"username":“<USER_NAME>","password":“<USER_PASS>"}



< HTTP/1.1 200 OK

< Server: CS3214-Personal-Server

< Content-Length: 21

< Content-Type: text/plain

<

This file is secure!

Secure File Auth.

Checking for the presence of a cookie in the HTTP header

> GET /private/secure.txt HTTP/1.1

> User-Agent: curl/7.81.0

> Host: localhost:12345

> Accept: */*

> Cookie: auth_jwt_token=<encrypted token>

Client asks for secure file

To show the server it can 

be trusted, it sends an 

auth token in a cookie

Server checks the token 

to see that the client was 

previously authenticated

Server puts the contents 

of the secure file in its 

response message



● Should a request be sent on every click?

○ “Client-side routing” - updates via JS code

● Clients can change URL in the address bar

○ What if the “fake” URL is bookmarked?

● Policy for a Svelte application (request → fallback):

HTML5 Fallback

1. Existing file/API → as is

2. / (server root) → index.html
3. /some/path → /some/path.html
4. else: 200.html

https://kit.svelte.dev/


● Debugging tool for HTTP requests

● Arguments include urls to query and flags

○ Great way to see the request and response 

flow between a client and server

○ Helps debug hanging and malformed headers

○ Can chain URLs together

● Flags:

○ -v: verbose mode

○ -0 / --http1.0: use HTTP 1.0

○ --path-as-is: do not truncate dot dot sequences 

Quick Sidenote: curl



curl Examples

Send a POST request with body

View headers

Manually set session cookies

$ curl -X POST -d \

'{"username":"user2023","password":"passwordf23"}' \

localhost:12345/api/login

$ curl -I localhost:12345/private/secure.txt

$ curl -v --cookie "auth_jwt_token=token" \

localhost:12345/private/secure.txt



Demo

Talking to a server using curl



Web Server Design

Robustness, Performance, & Scalability



● Client threads:

○ Should not bring down / block the whole server

● Ideal case:

○ All threads are doing productive work all the time, like in 

a threadpool

○ Must be mindful of latency

● Be mindful of return values!

Multithreaded Servers



● Look for inspiration in literature and other 

server implementations, like NGINX and Apache

● Suggestions:

○ Repurpose threadpool

○ Epoll set

○ Thread-per-client-connection

● Be mindful of the underlying hardware

● Web servers can be “embarrassingly” parallel 

because HTTP is stateless

● DO NOT write a forking/process-based server.

Spawning Threads



● Asynchronous event listener 

handling accept() and recv()
● Threads execute an event loop where they 

call epoll_wait()
○ Kernel returns an array of ready file descriptors

○ Thread is responsible for cleaning up dead connections 

(and freeing related memory)

○ For best performance, vary number of threads and max 

size of event array

EPoll



Web Server Design

IPv6 and Version Conformance



● IPv4

○ Looks like: 192.168.1.30

● IPv6

○ Looks like: 2001:db8:85a3::8a2e:370:7334

● Study the differences between network structures 

and attributes

● Server must support both IPv4 and IPv6 connections

○ Rlogin supports dual-binding

IPv4 versus IPv6



● Persistent connections:

○ HTTP 1.1 by default keeps the connection alive

○ HTTP 1.0 by default closes the connection

○ The connection header is respected

● Additional status states added

● Host header not required for HTTP 1.0, but required 

for HTTP 1.1

Version Differences



Web Server Design

MP4 Streaming



● Your server will support the /api/video endpoint.

○ Upon GET request, send back a JSON array of videos.

SERVERCLIENT

Video API Endpoint

[
{

“size”: 12345678,
“name”: “video1.mp4”

},
{

“size”: 24681012,
“name”: “video2.mp4”

},
]

GET /api/video HTTP/1.1
...



CLIENT SERVER

Range Requests

GET /video1.mp4 HTTP/1.1
Range: bytes=42-31415

HTTP/1.1 206 PARTIAL CONTENT
Content-Range: bytes

42-31415/1234567
...
<bytes>

● Your server will send the Accept-Ranges header 

and accept Range headers sent by clients.

○ Range header means: “give me bytes A-B of this file”

● The server responds with a 206 PARTIAL CONTENT status 

code and a Content-Range header.



Project Logistics

Grading and Advice



● The usual: gdb, strace, etc.

● Use curl to simulate interactions

○ HTTPie

○ Postman

● Hexdump function (hexdump.c)

● Fuzzing utilities

Very relevant skills for life outside of CS 3214

Debugging

https://github.com/jakubroztocil/httpie


Start Early! Hard due date: December14th

https://xkcd.com/1658/


● Please submit code that compiles

● Test using the driver before submitting!

○ Run the tests individually when debugging

○ Run them all at once to see how you’ll be graded

● “Passing” a test means that you get the correct 

result without crashing, within the time limit

○ A failing test can crash the rest of its section!

● Full scores required on some sections for others to run:

○ Minimum → auth/extra → malicious → benchmarks

● Benchmarks will be run after the deadline

● Benchmarked scores will be the median of 3 runs, 

assuming you pass all of them

Logistics



● Grade breakdown (125 points total):

○ 95 points via server_unit_test_pserv.py
■ 25 points Minimum Requirements

■ 20 points Authentication Functionality

■ 5 points HTML5 Fallback

■ 10 points Video Streaming

■ 5 points IPv6 Support

■ 15 points Extra Tests

■ 15 points Robustness (malicious tests)
○ 20 points via server_bench.py (5 tests × 4 points)

○ 10 points via documentation & version control

● 15 extra-credit points via fuzz-pserv.py
● 10 extra-credit points via superb performance (e.g. EPoll)

Logistics: Test Points



Scoreboard

Just like projects 2 and 3, you can submit your performance 

results to the scoreboard.

See the course website for detailed rules and instructions.

Great way to see how well your server is doing.

~cs3214/bin/sspostresult.py

https://courses.cs.vt.edu/cs3214/fall2023/projects/project4


I think this should be a fun 

project and you'll learn 

something new, even if 

you're already an 

experienced web 

programmer.

– Dr. Back



Concepts

● Read the project spec (Take notes!)

● Understand the starter code (Write comments! Look 

up system calls!)

Implementation

● Start with serving static files

● Move to authentication (/api/login)

● Move to serving /api/video and Range requests

● Save performance for last (easier debugging)

Where to start



The Project Home Page

Socket Programming

● socket() man page

● bind() man page

● listen() man page

● accept() man page

HTTP

● Mozilla Documentation - Message Formats

Helpful Links

https://courses.cs.vt.edu/cs3214/spring2023/projects/project4
https://linux.die.net/man/2/socket
https://linux.die.net/man/2/bind
https://linux.die.net/man/2/listen
https://linux.die.net/man/2/accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages


Fuzzing

(Not required, but fun )



What is Fuzzing?

Fuzzing is a software security testing technique: give a 

program some unexpected input, with the intention of 

crashing it or altering its behavior.

It’s a great way to find bugs and security vulnerabilities in 

our programs. Bugs in web servers are dangerous!



AFL++ is a source-code-guided fuzzer that can efficiently find 

bugs in C programs.

● Originally only works with programs reading 

from STDIN/files. It runs forever until stopped, getting 

smarter as it goes.

● We’ve created a library to allow it to work with 

network sockets, and a series of scripts for you to easily 

“fuzz” your server.

AFL++ GitHub Repo

AFL++ Website

Enter AFL++

(“We” meaning Dr. Back and 

Connor Shugg. This was part of 

a VT CS research project for 

Connor Shugg’s MS thesis.)

https://github.com/AFLplusplus/AFLplusplus
https://aflplus.plus/
https://vtechworks.lib.vt.edu/bitstream/handle/10919/110769/Shugg_CW_T_2022.pdf


Tools have been provided to enable the fuzzing of 

your servers. Once you’ve got a functional server, give it a 

whirl!

● Step 1: run ~cs3214/bin/fuzz-pserv.py
○ Let it run. See if it finds some issues!

● Step 2: output_dir/fuzz-rerun-gdb.sh
○ Run this with the “crash files” or “hang files” 

discovered by the fuzzer to debug your issues.

(This is an excellent bug-finding and bug-

reproducing system!)

AFL++ and your server



Demo

Fuzzing a buggy server



Markdown Documentation (multiple locations):

● On the course site

● In the base code repo (check sfi/)

Fuzzing Documentation

https://courses.cs.vt.edu/cs3214/spring2023/sfi/overview
https://git.cs.vt.edu/cs3214-staff/pserv/-/blob/master/sfi/overview.md


Using the fuzzer allows you to earn extra credit - up to 

extra points. You get more points the better your server 

does while the fuzzer is attacking it:

● Stage 1: getting the fuzzer running. (+5)

● Stage 2: fuzzer finds zero bugs in 15 seconds. (+2)

● Stage 3: fuzzer finds zero bugs in 2 minutes. (+2)

● Stage 4: fuzzer finds zero bugs in 10 minutes. (+2)

● Stage 5: fuzzer finds zero bugs in 1 hour. (+4)

Fuzzing Extra Credit



Questions?

Thank you for attending!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

