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Topics
● Overview of a Web Server (prerequisite knowledge)

○ OSI, TCP, HTTP, JSON, JWT

● Basics / Getting Started

● Web Server Design

○ Serving Files

○ Authentication

○ Robustness, Performance, & Scalability

○ IPv6

○ MP4 Streaming

● Logistics and Grading

● Fuzzing!



Overview of Web Server

Prerequisite Knowledge:

OSI, TCP, HTTP, JSON, JWT



● Network “Stack”

OSI Model



● Slightly more modern approach

OSI Model

(your server is here)



Socket Programming

● Medium through which programs access network

● System calls:

○ socket(): create the socket file descriptor

○ bind(): assign to (local) address and port

○ listen(): start queueing incoming requests

○ accept(): connect to a client, return new socket

All sockets by default are blocking



● Hypertext Transfer Protocol

● Exists in the application layer of the OSI model

○ Normally takes place over TCP/IP connections

● Developed at CERN in 1989 and governed by W3C (World 

Wide Web Consortium)

● Request and Response messages use verbiage to denote 

intent

○ GET, POST, PUT, DELETE

○ Stateless

HTTP



HTTP Requests

Version 1.1 requests are structured as follows:

POST /index.html HTTP/1.1

Host: localhost:12345

User-Agent: curl/7.81.0

Accept: text/html

Content-Type: application/json

Content-Length: 67

<67 bytes of data>

<method> <target> <version>

<header name>: <header value>

<blank line: CRLF> ("\r\n")

<message body>



HTTP Responses

Version 1.1 responses are structured as follows:

HTTP/1.1 200 OK

Accept-Ranges: bytes

Server: CS3214-Personal-Server

Content-Type: text/html

Content-Encoding: UTF-8

Content-Length: 3968

<contents of index.html>

<version> <response code>

<header name>: <header value>

<blank line: CRLF> ("\r\n")

<message body>



● Each line ends in:

○ CR: carriage return, \r
○ LF: line feed, \n

● Has version and status

● Optional header fields

● Blank CRLF, then message content (if any)

● HTTP status codes

HTTP Standard



JSON

Key, value store in a well-defined format

{

"a": "Example text",

"b": 0,

"c": [1, 2, 3, 4],

"d": {

"a": [],

"b": "Hello world"

}

}

“Javascript Object Notation”



● JSON Web Tokens are an open, industry 

standard RFC 7519 method for representing claims 

securely between two parties

● Debugged on main website: https://jwt.io

● Three parts:

○ Header

○ Payload

○ Signature

JSON Web Tokens

https://tools.ietf.org/html/rfc7519
https://jwt.io/


Encoded JWT token is delimited by dots

Example JWT

eyJ0eXAiOiJKV1QiLCJhbGciOi

JIUzI1NiJ9.eyJleHAiOjE2OTc

yNzE2MDAsImlhdCI6MTY5NzE4N

TIwMCwic3ViIjoidXNlcjIwMjM

ifQ.qtaLIlrQ23PemNtCeEMOla

P3vaWtfXbYJQfWEzbPy30

{

"typ": "JWT",

"alg": "HS256"

}

{

"exp": 1697271600,

"iat": 1697185200,

"sub": "user2023"

}

HMACSHA256 signature

You’ll 

see this 

later!



Basics / Getting Started



● Fork / clone the repo

○ Set to private!

● Use the provided./install-dependencies.sh to set 

up the project libraries

● Build the Svelte frontend & add some videos

○ Make sure npm and node are ones in ~cs3214/bin!

Getting Started

$ git clone <your fork of cs3214-staff/pserv.git>

$ cd pserv && ./install-dependencies.sh

$ cd svelte-app && npm install && npm run build

$ cd ../tests && ./build.sh

$ cd ../src && make

https://kit.svelte.dev/
https://git.cs.vt.edu/cs3214-staff/pserv.git


● Understand the code

○ The front-end (Svlete App), files, etc. is handled for you

● What do we write?

○ Any files you like, modifying http.c heavily
○ Hint: You’re only messing with 4 files! 

● Handle

○ Authentication

○ IPv4 and IPv6 dual support

○ HTML5 Fallback

○ Multi-client support

○ MP4 streaming

Getting Started



● Base code already supports:

○ HTTP request parsing,

○ HTTP response building,

○ File mime-type guessing,

○ Serving one client at a time.

Alright, then where do I start?

● Get a feel for static file serving first (GET request 

to /something.txt).

● Start with minimum requirements (200 OK response to GET 

/api/login, multiple simultaneous connections) .

● Move to IPv6 support, then authentication functionality.

Provided Base Code



● Base code parses request headers into structs (think 

Project 1)

● The information is inside a buffer (struct bufio)

● http_process_headers processes it and stores important 

info in struct http_transaction

● You should store extra information such as:
○ Authentication token
○ Request range
○ Content Type

● Store as an offset or value? Up to you!

HTTP Transaction Struct



● Already supported for you!

● Supports the following program arguments:

○ -p <port number> defines the port to bind()

○ -R <path> defines the server root to use

○ -a enables HTML5 fallback

(... plus a few more!)

Parsing Arguments



● Use SSH tunneling

On local machine:

(if connecting to a specific host, use <host>.rlogin in place of localhost)

On rlogin, start server normally:

Open browser to localhost:<port>

Testing in browser

$ ssh –L <port>:localhost:<port> <pid>@rlogin.cs.vt.edu

$ ./server –p <port> -R <root data dir>



Demo

Getting started
Common pitfalls



Web Server Design

Authentication & Higher-Level Design (and curl)



● Serve any file in the root directory

○ Be mindful of security vulnerabilities in the provided path 
(what about ‘.’ and ‘..’?)

Serving Static Files

GET /hello.txt

Hello world!

GET /../../private/passwords.txt

Client asks for the 

contents of hello.txt

Server opens hello.txt 

and responds with its 

contents and type.

text/plain



Authentication

POST /api/login

GET /private/secure.txt

{"exp":1697271600,"iat":1697185200,"sub":"user2023"}

This file is secure!

Client supplies 

correct login 

information

Server returns 

authentication 

token

Client supplies 

token in a cookie

Server looks at 

cookie, verifies the 

token, and provides 

the private file

application/json

text/plain



● Only need to handle a single user:

● Hardwiring credentials in source code is often bad practice.

● Hard-coding will not pass testing! 

● The autograder supplies environment variables:
○ USER_NAME
○ USER_PASS
○ SECRET

● Use env to supply these to the unit tests.

Auth. Credentials

{"username":“<USER_NAME>","password":“<USER_PASS>"}



< HTTP/1.1 200 OK

< Server: CS3214-Personal-Server

< Content-Length: 21

< Content-Type: text/plain

<

This file is secure!

Secure File Auth.

Checking for the presence of a cookie in the HTTP header

> GET /private/secure.txt HTTP/1.1

> User-Agent: curl/7.81.0

> Host: localhost:12345

> Accept: */*

> Cookie: auth_jwt_token=<encrypted token>

Client asks for secure file

To show the server it can 

be trusted, it sends an 

auth token in a cookie

Server checks the token 

to see that the client was 

previously authenticated

Server puts the contents 

of the secure file in its 

response message



● Should a request be sent on every click?

○ “Client-side routing” - updates via JS code

● Clients can change URL in the address bar

○ What if the “fake” URL is bookmarked?

● Policy for a Svelte application (request → fallback):

HTML5 Fallback

1. Existing file/API → as is

2. / (server root) → index.html
3. /some/path → /some/path.html
4. else: 200.html

https://kit.svelte.dev/


● Debugging tool for HTTP requests

● Arguments include urls to query and flags

○ Great way to see the request and response 

flow between a client and server

○ Helps debug hanging and malformed headers

○ Can chain URLs together

● Flags:

○ -v: verbose mode

○ -0 / --http1.0: use HTTP 1.0

○ --path-as-is: do not truncate dot dot sequences 

Quick Sidenote: curl



curl Examples

Send a POST request with body

View headers

Manually set session cookies

$ curl -X POST -d \

'{"username":"user2023","password":"passwordf23"}' \

localhost:12345/api/login

$ curl -I localhost:12345/private/secure.txt

$ curl -v --cookie "auth_jwt_token=token" \

localhost:12345/private/secure.txt



Demo

Talking to a server using curl



Web Server Design

Robustness, Performance, & Scalability



● Client threads:

○ Should not bring down / block the whole server

● Ideal case:

○ All threads are doing productive work all the time, like in 

a threadpool

○ Must be mindful of latency

● Be mindful of return values!

Multithreaded Servers



● Look for inspiration in literature and other 

server implementations, like NGINX and Apache

● Suggestions:

○ Repurpose threadpool

○ Epoll set

○ Thread-per-client-connection

● Be mindful of the underlying hardware

● Web servers can be “embarrassingly” parallel 

because HTTP is stateless

● DO NOT write a forking/process-based server.

Spawning Threads



● Asynchronous event listener 

handling accept() and recv()
● Threads execute an event loop where they 

call epoll_wait()
○ Kernel returns an array of ready file descriptors

○ Thread is responsible for cleaning up dead connections 

(and freeing related memory)

○ For best performance, vary number of threads and max 

size of event array

EPoll



Web Server Design

IPv6 and Version Conformance



● IPv4

○ Looks like: 192.168.1.30

● IPv6

○ Looks like: 2001:db8:85a3::8a2e:370:7334

● Study the differences between network structures 

and attributes

● Server must support both IPv4 and IPv6 connections

○ Rlogin supports dual-binding

IPv4 versus IPv6



● Persistent connections:

○ HTTP 1.1 by default keeps the connection alive

○ HTTP 1.0 by default closes the connection

○ The connection header is respected

● Additional status states added

● Host header not required for HTTP 1.0, but required 

for HTTP 1.1

Version Differences



Web Server Design

MP4 Streaming



● Your server will support the /api/video endpoint.

○ Upon GET request, send back a JSON array of videos.

SERVERCLIENT

Video API Endpoint

[
{

“size”: 12345678,
“name”: “video1.mp4”

},
{

“size”: 24681012,
“name”: “video2.mp4”

},
]

GET /api/video HTTP/1.1
...



CLIENT SERVER

Range Requests

GET /video1.mp4 HTTP/1.1
Range: bytes=42-31415

HTTP/1.1 206 PARTIAL CONTENT
Content-Range: bytes

42-31415/1234567
...
<bytes>

● Your server will send the Accept-Ranges header 

and accept Range headers sent by clients.

○ Range header means: “give me bytes A-B of this file”

● The server responds with a 206 PARTIAL CONTENT status 

code and a Content-Range header.



Project Logistics

Grading and Advice



● The usual: gdb, strace, etc.

● Use curl to simulate interactions

○ HTTPie

○ Postman

● Hexdump function (hexdump.c)

● Fuzzing utilities

Very relevant skills for life outside of CS 3214

Debugging

https://github.com/jakubroztocil/httpie


Start Early! Hard due date: December14th

https://xkcd.com/1658/


● Please submit code that compiles

● Test using the driver before submitting!

○ Run the tests individually when debugging

○ Run them all at once to see how you’ll be graded

● “Passing” a test means that you get the correct 

result without crashing, within the time limit

○ A failing test can crash the rest of its section!

● Full scores required on some sections for others to run:

○ Minimum → auth/extra → malicious → benchmarks

● Benchmarks will be run after the deadline

● Benchmarked scores will be the median of 3 runs, 

assuming you pass all of them

Logistics



● Grade breakdown (125 points total):

○ 95 points via server_unit_test_pserv.py
■ 25 points Minimum Requirements

■ 20 points Authentication Functionality

■ 5 points HTML5 Fallback

■ 10 points Video Streaming

■ 5 points IPv6 Support

■ 15 points Extra Tests

■ 15 points Robustness (malicious tests)
○ 20 points via server_bench.py (5 tests × 4 points)

○ 10 points via documentation & version control

● 15 extra-credit points via fuzz-pserv.py
● 10 extra-credit points via superb performance (e.g. EPoll)

Logistics: Test Points



Scoreboard

Just like projects 2 and 3, you can submit your performance 

results to the scoreboard.

See the course website for detailed rules and instructions.

Great way to see how well your server is doing.

~cs3214/bin/sspostresult.py

https://courses.cs.vt.edu/cs3214/fall2023/projects/project4


I think this should be a fun 

project and you'll learn 

something new, even if 

you're already an 

experienced web 

programmer.

– Dr. Back



Concepts

● Read the project spec (Take notes!)

● Understand the starter code (Write comments! Look 

up system calls!)

Implementation

● Start with serving static files

● Move to authentication (/api/login)

● Move to serving /api/video and Range requests

● Save performance for last (easier debugging)

Where to start



The Project Home Page

Socket Programming

● socket() man page

● bind() man page

● listen() man page

● accept() man page

HTTP

● Mozilla Documentation - Message Formats

Helpful Links

https://courses.cs.vt.edu/cs3214/spring2023/projects/project4
https://linux.die.net/man/2/socket
https://linux.die.net/man/2/bind
https://linux.die.net/man/2/listen
https://linux.die.net/man/2/accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages


Fuzzing

(Not required, but fun )



What is Fuzzing?

Fuzzing is a software security testing technique: give a 

program some unexpected input, with the intention of 

crashing it or altering its behavior.

It’s a great way to find bugs and security vulnerabilities in 

our programs. Bugs in web servers are dangerous!



AFL++ is a source-code-guided fuzzer that can efficiently find 

bugs in C programs.

● Originally only works with programs reading 

from STDIN/files. It runs forever until stopped, getting 

smarter as it goes.

● We’ve created a library to allow it to work with 

network sockets, and a series of scripts for you to easily 

“fuzz” your server.

AFL++ GitHub Repo

AFL++ Website

Enter AFL++

(“We” meaning Dr. Back and 

Connor Shugg. This was part of 

a VT CS research project for 

Connor Shugg’s MS thesis.)

https://github.com/AFLplusplus/AFLplusplus
https://aflplus.plus/
https://vtechworks.lib.vt.edu/bitstream/handle/10919/110769/Shugg_CW_T_2022.pdf


Tools have been provided to enable the fuzzing of 

your servers. Once you’ve got a functional server, give it a 

whirl!

● Step 1: run ~cs3214/bin/fuzz-pserv.py
○ Let it run. See if it finds some issues!

● Step 2: output_dir/fuzz-rerun-gdb.sh
○ Run this with the “crash files” or “hang files” 

discovered by the fuzzer to debug your issues.

(This is an excellent bug-finding and bug-

reproducing system!)

AFL++ and your server



Demo

Fuzzing a buggy server



Markdown Documentation (multiple locations):

● On the course site

● In the base code repo (check sfi/)

Fuzzing Documentation

https://courses.cs.vt.edu/cs3214/spring2023/sfi/overview
https://git.cs.vt.edu/cs3214-staff/pserv/-/blob/master/sfi/overview.md


Using the fuzzer allows you to earn extra credit - up to 

extra points. You get more points the better your server 

does while the fuzzer is attacking it:

● Stage 1: getting the fuzzer running. (+5)

● Stage 2: fuzzer finds zero bugs in 15 seconds. (+2)

● Stage 3: fuzzer finds zero bugs in 2 minutes. (+2)

● Stage 4: fuzzer finds zero bugs in 10 minutes. (+2)

● Stage 5: fuzzer finds zero bugs in 1 hour. (+4)

Fuzzing Extra Credit



Questions?

Thank you for attending!
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