
CS 3214: Project 1

The Customizable Shell

Help Session:

Friday Feb 9, 2023 7:00 PM

Anthony Nguyen <anthonyn33@vt.edu>

Thomas Tran <thomastran@vt.edu>

Topics

● Shell Concepts

● Project Overview / Logistics

● Version Control (Git & Gitlab)

● Debugging (GDB & Valgrind)

● Advice

● Q & A

Shell Concepts

What is a shell?

● Command Interpreter
○ Reads user input and executes user requests

○ Not to be confused with a “Terminal” (next slide explains distinction)

Terminal vs Shell

Terminal (the front-end GUI of our shell) Shell (an executable with no GUI)

This terminal is running bash, a shell

program

Examples: gnome-terminal,

terminator, Terminal.app

(macOS) etc.

Behind the Scenes

$ echo 'Welcome to Systems!'

Welcome to Systems!

f

o
r
k

FOUR STEPS for non-built-in

1. Shell waits for user input
2. Shell interprets command

3. Forks a process
4. If the command is a foreground

process, the parent waits for the child
to finish before taking in new
command. If it's a background

process, the parent waits for a signal
from the child but at the meantime

accepts additional command.

- Child executes the command

and writes to stdout

Additional Features for the Shell (where you come in)

● Foreground / Background Processes

● Process Groups

● Built-in Commands

● I/O Piping

● I/O Redirection

● Signal Handling

● Terminal State

Foreground / Background Processes

● The shell can fork processes into the foreground or background

Foreground Background

- Only one foreground process group

at a time
- Process has access to the terminal

- Process doesn’t have terminal access

- Using ‘&’ sends command to
background to run

Process Groups

● A Job is essentially a pipelined-command

● Each Job has its own process group
o Each command within a Job should have the same PGID
o Two methodologies of creating new processes:

o fork() and execvp()
o posix_spawn

● Jobs are deleted when they are completed
o Be careful not to delete a job prematurely

o See the comment above wait_for_job()

Notice the PID and PGID!

POSIX Spawn

● Replaces fork() + exec() entirely

● Code is streamlined rather than handling multiple processes in if-else statements

● posix_spawnattr_t and posix_spawn_file_actions_t are structs that store

information about process groups and I/O redirection/piping respectively. These

structs don’t do anything until posix_spawnp is used.

● You will need to setup/configure these structs

● Example: posix_spawn(3) - Linux manual page (man7.org)

Note: You need to include “spawn.h” in your cush.c to use these functions.

The file is located in the posix_spawn directory. Also be sure to use the

“make” command to compile posix_spawn.

https://man7.org/linux/man-pages/man3/posix_spawn.3.html

fork() + exec() posix_spawn()

You can use fork() + exec() for this project, but our recommendation is:

POSIX Spawn Attributes

● Process Groups - posix_spawnattr_setpgroup()

● Terminal Control - posix_spawnattr_tcsetpgrp_np()

● Piping - posix_spawn_file_actions_adddup2()

● I/O Redirection - posix_spawn_file_actions_addopen()

More listed on both the spec and <spawn.h>.

Built-in Commands

● Commands that are defined within the program by you
○ No need to fork off and execute an external program

● Required Built-In Commands for your shell:
○ kill - kills a process

○ jobs - displays a list of jobs
○ stop - stops a process
○ fg - sends a process to foreground

○ bg - sends a process to background
○ exit - exits the shell

● Built-in Commands are not considered Jobs

● Two additional built-ins / functionality extenders also required (examples
in later slide)

○ One low-effort (cd, custom prompt, etc.)
○ One high-effort (glob expansion, history, etc.)

Built-ins Behind the Scenes

$ jobs

[1]+ Stopped vim
[2]- Running sleep 20 &

FOUR STEPS for built-in

1. Shell waits for user input
2. Shell realizes this is a built in command

3. Shell executes built-in (no forking)
4. After execution, shell repeats

I/O Piping

● The Shell will fork off a

child process to execute

each command in a

pipeline

● But since this is a pipeline

of commands, we’ll also

need to wire STDIN and

STDOUT for each

process….

ls -l | grep *.txt | wc

ls -l

grep *.txt

wc

Redirect the output to grep

Redirect the output to wc

Output to stdout

I/O Piping

ls -l | grep *.txt | wc

ls -l grep *.txt wc

● Processes will wait on previous process, final process outputs to terminal

● STDIN and STDOUT for processes are joined to create the pipeline

Stdin:
Stdout:

1 9 58

I/O Redirection

● > overwrites original file contents before writingnew output

● >> appends new content to the end of the original file

● < read input from a file rather than STDIN

I/O Redirection (Output)

echo 'Welcome to Systems!' > output.txt

Welcome to Systems!

f

o
r
k

output.txt

I/O Redirection (Input)

wc < hello.txt

1 2 12

f

o
r
k

hello.txt

I/O Redirection (Stderr)

● Contents written to STDERR can also be piped into other processes using |&

and outputted to files using >&.

Notice how the message “Write to stderr.” was not outputted.

Signal Handling

● Shells can handle signals sent to them
○ SIGINT (Ctrl + C)

○ SIGTSTP (Ctrl + Z)

○ SIGCHLD (when a child process terminates)

■ Cannot predict when SIGCHLD arrives, make sure to follow async-signal safety rules (refer

to slide 9 of L-P6)

● Most of the functionality of this will be done in
handle_child_status(pid_t pid, int status)

● User processes can use the kill(2)/killpg(2) system call to send signals to each

other (subject to permission)

● strsignal(3) returns a string describing the signal number passed in

Handling SIGINT (Ctrl + C)

1. Shell and single child

process (in the foreground)

are running

2. User sends SIGINT (Ctrl +C) 3. Signal sent to foreground

process group

4. Group is forced to terminate,

shell reacquires terminal control

Explanation : https://en.wikipedia.org/wiki/Process_group#Applications

https://en.wikipedia.org/wiki/Process_group

Handling SIGTSTP (Ctrl + Z)

1. Shell and single child

process (in the foreground)

are running

2. User sends SIGTSTP (Ctrl + Z) 3. Signal sent to foreground

process group

4. Group is forced to stop, shell

reacquires terminal control

Explanation : https://en.wikipedia.org/wiki/Process_group#Applications

Z

https://en.wikipedia.org/wiki/Process_group

Handling SIGCHLD

1. Shell and single child

process (foreground or

background) are running

2. Child process is finished and

terminates - notifies parent by

sending SIGCHLD

3. The shell’s SIGCHLD

handler code to capture

child status and perform any

necessary bookkeeping (in

next slide)

4. Shell continues running

Explanation : https://en.wikipedia.org/wiki/Process_group#Applications

https://en.wikipedia.org/wiki/Process_group

Handling SIGCHLD: WIF* Macros

● When wait* is called it will return a pid and a status for a child process that

changes state. Using macros, we can decode this status to discover what

state a process changed to and how it happened:

○ WIFEXITED(status) - did child process exit normally?

○ WIFSIGNALED(status) - was child process signaled to terminate?

○ WIFSTOPPED(status) - was child process signaled to stop?

Terminal State

● Sample: make the current terminal state the new known “good state” of

your shell

○ void termstate_sample(void)

○ Sample when a (originally started, currently) foreground job exits normally with status 0

● Save: save the current terminal state for a specific job (e.g. when its

stopped) so it can be restored when the job moves back to the foreground

○ void termstate_save(struct termios *saved_tty_state)

Project Overview

Requirements and Grading
1. Basic Functionality - 50 pts

a. Start foreground and background jobs

b. Built-in commands : ‘jobs’, ‘fg’, ‘bg’, ‘kill’, ‘stop’

c. Signal Handling (SIGINT, SIGTSTP, SIGCHLD)

2. Advanced Functionality - 50 pts
a. I/O Piping

b. I/O Redirection

c. Running programs requiring exclusive terminal access (ex: vim)

3. Two Extra Built-ins - 20 pts
a. One low effort

b. One high effort

c. Testing required for both

4. Version Control (git) - 10 pts
a. At least 3 commits per partner

5. Documentation - 10 pts
a. Write a README.txt

b. Comments and function headers Total : 140 points

Before You Start Coding ….

● Take time to read over, understand the spec and the starter code

● Read the provided lecture material

● Understand Exercise 1
○ fork() / exec() model (please just read posix_spawn)

○ Piping : pipe(), dup2(), close()

● Check out Dr. Back’s example shell
○ ~cs3214/bin/cush-gback in rlogin

○ Compare its output with your shell’s

Base Code

● Already includes a parser!

● Parser spits out hierarchical data structures

● All you need to do is process these structs!

Structs

● ast_command_line

● ast_pipeline
● A “Job”

● I/O redirection files

● Append (>>)

● Background (&)

● ast_command
● Argv

● Stderr redirect

See shell-ast.h for fields and their descriptions!

echo 70 > anthony_midterm.txt; cat isaiah_midterm.txt | rev

> steve_mitderm.txt

ast_command_line

echo 70 > anthony_midterm.txt

ast_pipeline

cat isaiah_midterm.txt | rev > steve_mitderm.txt

ast_pipeline

echo 70

ast_command

cat isaiah_midterm.txt

ast_command

rev

ast_command

ast_command_line

ast_pipeline

ast_command

ast_pipeline

ast_command ast_command

List Data Structure

● You’re also provided with a doubly linked list data structure
○ Check out list.h and list.c

● You’ll be using this list throughout the semester

● Read through list.h before using it

“Data contains node” vs “Node points to data”

class listnode<T> {

T data;
listnode <T> prev;
listnode<T> next;

}

struct list_elem {

struct list_elem * prev;
struct list_elem * next;

}

Our Linked List A Regular Linked List

“Data contains node” vs “Node points to data”

class listnode<T> {

T data;
listnode <T> prev;
listnode<T> next;

}

struct list_elem {

struct list_elem * prev;
struct list_elem * next;

}

Our Linked List A Regular Linked List

Sentinel Node Node Sentinel

Data DataSentinel Sentinel
list_elem list_elem

Other

fields

Other

fields

Struct 1 Struct 2

So how do I get my data?

Beautiful

explanation by one
of our UTA’s :)

Retrieve data from a struct list_elem by using

the list_entry macro:
struct ast_command * cmd = list_entry(e, struct ast_command, elem);

List Pitfalls

● Don’t:
○ Use the same list_elem for multiple lists

○ Edit an element while iterating
■ Naive loop to remove elements in a list will fail!

○ Forget to list_init()

// invalid example

for (list_elem in list)

{

// do stuff

if (someCondition)

{

list_remove(currElem);

}

}

BAD IDEA :(

// valid example: deallocates a pipeline struct and any commands stored in it while iterating

void ast_pipeline_free(struct ast_pipeline *pipe)

{

for (struct list_elem * e = list_begin(&pipe->commands); e != list_end(&pipe->commands);) {

struct ast_command *cmd = list_entry(e, struct ast_command, elem);

e = list_remove(e); //Acts as the iterator; stores next element into e

ast_command_free(cmd);

}

free(pipe);

} // make sure to remove an ast_pipeline from a list before adding it to another!

// bottom line with lists? ALWAYS TEST

Utility Functions (Strongly Recommended)

● Signal Support (signal_support.c / .h)
○ signal_block()

○ signal_unblock()

○ singal_set_handler()

● Terminal State Management (termstate_management.c / .h)
○ termstate_init()

○ termstate_give_terminal_to()

○ termstate_give_terminal_back_to_shell()

○ termstate_get_current_terminal_owner()

○ termstate_save()

○ termstate_restore()

Additional Built-ins and extensions

● Your shell must contain two extra built-ins / functionality extensions
o One high effort and one low effort (bolded is low-effort)

● Ideas include:

● If you have an idea not shown on the list or have any doubts please ask us

- Customizable Prompt

- Setting/unsetting env vars
- Implementing the ‘cd’ built-in
- Glob expansion (e.g., *.c)

- Timing commands (ex. time)
- Alias support

- Shell Variables

- Directory Stack
- Command-line history
- Backquote substitution

- Smart command-line completion
- Embedded Apps

Testing / Submission

● Test the driver before submitting, don’t just run tests individually

● When grading, tests will be ran 3-5 times. If you crash a single time, it’s

considered failing

● Make sure you don’t have undefined behavior by checking the system call

return code and using valgrind to address memory related issues

Test Driver

Options:

● -b : basic tests (processes, built-ins, signals)

● -a : advanced tests (I/O Piping, I/O Redirection, exclusive terminal access)

● -h : list all the options

cd src/

../tests/stdriver.py [options]

*- stdriver.py also available at ~cs3214/bin/stdriver.py

● The driver reads from .tst file that describes a test suite (ex. basic.tst)
○ Ex: basic.tst contains a series of test scripts that it will run from the folder /tests/basic

Additional Tests

● You are required to write tests for your two extra built-ins
○ Create a .tst file in ‘tests’ and create a directory that will store your test scripts

● Inside <custom>.tst file:

= <custom> Tests

pts <custom>/<test_name>.py

pts <custom>/<test_name>.py

…

- The driver checks number of total points

(pts) to use for a test. Since this is just your
own custom tests you can put an arbitrary
points here

- Use gback_glob_test.py as a starter.= Milestone Tests

1 basic/foreground.py

1 basic/cmdfail_and_exit_test.py

Additional Tests (Part 2)

● Make sure your custom.tst file is of type “ASCII text”

● If it includes Windows line terminators (CR, CRLF, etc) it will fail

● We want \n, not \r\n

$ file custom.tst custom.tst: ASCII text

Design Document

● When you submit you must include

a README.txt describing your

implementation of P1

● Explain the custom built-ins created

and approach taken to develop

them.

● TAs will assign credit only for the

functionality for which test cases

and documentation exist

Version Control

Version Control

● You will be using Git and Gitlab for managing your source code

● Why?
○ Organizes your code

○ Keeps track of features

○ Allows collaborators to work freely without messing up other existing code

○ Back-ups whenever something goes wrong

Basic Git Commands

● Stage file for commit:

● Commit files:

● Push changes to remote (note: always pull before push!)

$ git add <file_name>

$ git commit -m ‘Add a description here’

$ git push [origin <branch_name>]

Basic Git Commands

● Fetch changes from remote:

● Check status:

● Revert to the previous commit:

$ git pull

$ git status

$ git reset [--hard]

Basic Git Commands

● Create a new branch from the current branch:

● Switch to another branch:

● Merge a branch into the current branch

$ git checkout –b <new_branch_name>

$ git checkout <branch_name>

$ git merge <branch_name>

Setup Git Access

● You’ll need an SSH Key to get access to projects at git.cs.vt.edu

● If you don’t already have a key…

○ Create a new key:

○ Add Key to https://git.cs.vt.edu/profile/keys

■ You will paste public key here ----------->

$ ssh-keygen -t rsa -b 4096 -C "email@vt.edu" \

-f ~/.ssh/id_rsa

https://git.cs.vt.edu/profile/keys

● Verify you have access

● The first time you connect you will be asked to verify the host, just answer

‘Yes’ to continue

● You can get in-depth explanations here:

○ Generate a key

○ Use an existing key

Verify Git Access

PTY allocation request failed on channel 0

Welcome to GitLab, @spencetk! ← Your pid should be displayed here

Connection to git.cs.vt.edu closed.

11 spencetk@linden ~ >ssh git@git.cs.vt.edu

https://git.cs.vt.edu/help/ssh/README
https://git.cs.vt.edu/help/ssh/README

1. One member will fork the base repository:
○ https://git.cs.vt.edu/cs3214-staff/cs3214-cush

2. Invite partner to collaborate
○ Go to Settings > Members to add them

○ Check partner role permissions too

3. Both members will clone the forked repository

on their machines:

IMPORTANT: Set forked repository to private
Go to Settings > General > Visibility, project features, permissions

GitLab Project Setup

$ git clone <your git repo url>.git *Your forked repository will have a
navigation menu on the left side.
Click under Settings to add members

and set repo to private

cs3214-cush

https://git.cs.vt.edu/cs3214-staff/cs3214-cush

The GNU Project

Debugger (GDB)

Starting GDB

● 1. Invoke GDB with a program:

● 2. Run with command

● Must be compiled with debug symbols, -g

$ gdb program

(gdb) run arg1 arg2

Breakpoints
● Set a breakpoint

● Set a conditional breakpoint:

● Ignore breakpoint #1 100 times

● Show # of times breakpoint was hit

(gdb) b <func_name> OR

(gdb) b <line_number>

(gdb) b <func_name> if <condition>

(gdb) ignore 1 100

(gdb) info b

Backtrace and Frames
● Show backtrace:

● Show frame:
○ After selecting frame, you can print all variables declared in that function call

(gdb) backtrace

(gdb) frame <num>

Follow-Fork-Mode
● Which process to follow after a fork (parent / child):

○ ‘parent’ = ignore child process and continue debugging the parent

○ ‘child’ = begin debugging the child process when fork() is called

● Retaining debugger control after fork:
○ After a fork, specify whether to freeze the child or allow it to run (this may make it difficult to

find race conditions)

(gdb) set follow-fork-mode <mode>

(gdb) set detach-on-fork <mode>

Light reading: https://visualgdb.com/gdbreference/commands/set_follow-fork-mode

https://visualgdb.com/gdbreference/commands/set_follow-fork-mode

Valgrind

$valgrind --log-file="output.log" --leak-check=full ./cush

1. Start valgrind

cush@cedar in src> jobs

cush@cedar in src> ls

2. Run commands in your shell

3. Check the log file

Advice

Advice

● START EARLY

● READ! Then create a roadmap before coding

● Utilize TAs
○ Come with questions prepared, try to figure out what the problem is first

○ Be organized and have clean code - the cleaner it is, the faster we can help!

○ Run valgrind and try debugging with GDB before consulting us

○ TA’s all have unique ways of implementing/coding. You will hear different answers that both work.

○ Discord, Zoom, Class Forum

● Understand the Exercises

● Use valgrind! This can isolate many bugs

● Become an expert at the debugger

● Find what works best for communicating with your partner
○ In-Person Meetings, Discord, Zoom, etc.

Sources

● Referred to previous help session slides created by previous UTA’s Kent

McDonough, Connor Shugg, Joe D’Anna, Chris Cerne, Justin Vita, Sam

Lightfoot, and Alex Kyer, Timothy Wu, Tanvi Allada, Vineet Marri, and

Zhuowei Wen since the Fall 2023 Semester

● Spencer Keefer created the revised slides

Thanks for attending!
Questions?

	Slide 1
	Slide 2: Topics
	Slide 3
	Slide 4: What is a shell?
	Slide 5: Terminal vs Shell
	Slide 6: Behind the Scenes
	Slide 7: Additional Features for the Shell (where you come in)
	Slide 8: Foreground / Background Processes
	Slide 9: Process Groups
	Slide 10
	Slide 11: POSIX Spawn
	Slide 12: fork() + exec()
	Slide 13: POSIX Spawn Attributes
	Slide 14: Built-in Commands
	Slide 15: Built-ins Behind the Scenes
	Slide 16: I/O Piping
	Slide 17: I/O Piping
	Slide 18: I/O Redirection
	Slide 19: I/O Redirection (Output)
	Slide 20: I/O Redirection (Input)
	Slide 21: I/O Redirection (Stderr)
	Slide 22: Signal Handling
	Slide 23: Handling SIGINT (Ctrl + C)
	Slide 24: Handling SIGTSTP (Ctrl + Z)
	Slide 25: Handling SIGCHLD
	Slide 26: Handling SIGCHLD: WIF* Macros
	Slide 27
	Slide 28: Terminal State
	Slide 29
	Slide 30: Requirements and Grading
	Slide 31: Before You Start Coding ….
	Slide 32: Base Code
	Slide 33: Structs
	Slide 34
	Slide 35: List Data Structure
	Slide 36: “Data contains node” vs “Node points to data”
	Slide 37: “Data contains node” vs “Node points to data”
	Slide 38: So how do I get my data?
	Slide 39: List Pitfalls
	Slide 40: Utility Functions (Strongly Recommended)
	Slide 41: Additional Built-ins and extensions
	Slide 42: Testing / Submission
	Slide 43: Test Driver
	Slide 44: Additional Tests
	Slide 45: Additional Tests (Part 2)
	Slide 46: Design Document
	Slide 47
	Slide 48: Version Control
	Slide 49: Basic Git Commands
	Slide 50: Basic Git Commands
	Slide 51: Basic Git Commands
	Slide 52: Setup Git Access
	Slide 53: Verify Git Access
	Slide 54: GitLab Project Setup
	Slide 55
	Slide 56: Starting GDB
	Slide 57: Breakpoints
	Slide 58: Backtrace and Frames
	Slide 59: Follow-Fork-Mode
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Advice
	Slide 64: Sources
	Slide 65

