
CS3214 Fall 2024 Project 1 - “Customizable Shell”

Due Date: See website for due date (Late days may be used.)

This project must be done in groups of 2 students. Self-selected groups must have regis-
tered using the grouper app (URL). Otherwise, a partner will be assigned to you.

1 Introduction

This assignment introduces you to the principles of process management and job control
in a Unix-like operating system. In this project, you will develop a simple job control
shell.

This is an open-ended assignment. In addition to implementing the required functional-
ity, we encourage you to define the scope of this project yourself.

2 Base Functionality

A shell receives line-by-line input from a terminal that represents user commands. Some
user commands are builtins, which are implemented by the shell itself. If the user inputs
the name of such a built-in command, the shell will execute this command. Otherwise,
the shell will interpret the input as containing the name of an external program to be
executed, along with arguments that should be passed to it. In this case, the shell will
fork a new child process and execute the program in the context of the child. Normally,
the shell will wait for a command to complete before reading the next command from the
user. However, if the user appends an ampersand ‘&’ to a command, the command is
started and the shell will return to the prompt immediately. In this case, we refer to the
running command as a “background job,” whereas commands the shell waits for before
processing new input are called “foreground jobs.”

The shell provides job control. A user may interrupt foreground jobs, send foreground
jobs into the background, and vice versa. Thus at a given point in time, a shell may run
zero or more background jobs and zero or one foreground jobs. If there is a foreground
job, the shell waits for it to complete before printing another prompt and reading the
next command. In addition, the shell informs the user about status changes of the jobs
it manages. For instance, jobs may exit, or terminate due to a signal, or be stopped for
several reasons.

At a minimum, we expect that your shell has the ability to start foreground and back-
ground jobs and implements the built-in commands ‘jobs,’ ‘fg,’ ‘bg,’ ‘kill,’ ’exit,’ and
‘stop.’ The semantics of these commands should match the semantics of the same-named
commands in bash. The ability to correctly respond to ˆC (SIGINT) and ˆZ (SIGTSTP)
is expected, as are informative messages about the status of the children managed. Like
bash, you should use consecutively numbered small integers to enumerate your jobs.

For the minimum functionality, the shell need not support pipes (|), I/O redirection
(< > >>), nor the ability to run programs that require exclusive access to the terminal
(e.g., vim).

Created by G. Back (gback@cs.vt.edu) 1 September 11, 2024

https://courses.cs.vt.edu/cs3214/fall2024/grouper

CS3214 Fall 2024 Project 1 - “Customizable Shell”

We expect most students to implement pipes, I/O redirection, and managing the con-
trolling terminal to ensure that jobs that require exclusive access to the terminal obtain
such access (see Section 3.3). Beyond that, cush’s customizability, described in Section 5,
should allow for plenty of creative freedom.

3 Strategy

3.1 Handling SIGCHLD To Process Status Changes

At a given point in time, a user may have multiple jobs running, each executing arbitrary
programs chosen by the user. Because the shell cannot and does not know what these
programs do, it has to rely on a notification facility from the OS to be informed when
these jobs encounter events the shell needs to know about. We refer to such events as
“changing status,” where “status” means whether the job is running1, has been stopped,
has exited, or has been terminated with a signal (for instance, crashed).

This notification facility involves a protocol in which the OS kernel sends an asynchronous
signal (SIGCHLD) to the shell, and in which the shell then follows up by executing a sys-
tem call (a variant of wait(), specifically waitpid(), as shown in the provided starter
code).2 3

Thus, you will need to catch the SIGCHLD signal to learn about when the shell’s child
processes change status. Since child processes execute concurrently with respect to the
parent shell, and since the shell has no knowledge of what these processes are doing,
it is impossible to predict when a child will exit (or terminate with a signal), and thus
it is impossible to predict when this signal will arrive. In the worst case, a child may
have already terminated by the time the parent returns from fork()! You also should not
make any assumptions about how a child process might change state: for instance, even
if the user issues a kill built-in command to terminate a process, the processes might
not immediately terminate (or may not terminate at all), so the shell should not assume
that a status change occurred unless and until it has first-hand information from the OS
that it did.

Because of the asynchronous nature of signal delivery, you will need to block handling
of the signal in those sections of your code where you access data structures that are also
needed by the handler that is executed when this signal arrives. For example, consider
the data structure used to maintain the current set of jobs. A new job is added after a
child process has been forked; a job may need to be removed when SIGCHLD is received.
To avoid a situation where the job has not yet been added when SIGCHLD arrives, or -

1We use the word “running” here not in the sense of the simplified process state diagram, but rather
in the informal sense of having been started, but not having finished, and also not currently suspended
(stopped) by the user or system.

2Such protocols are widely used in systems programming - for instance, an operating system kernel
interacts with devices in a very similar way through interrupts.

3So far, we have equated jobs and child processes in our discussion. Jobs that include multiple child
processes will be discussed in Section 3.2.

Created by G. Back (gback@cs.vt.edu) 2 September 11, 2024

CS3214 Fall 2024 Project 1 - “Customizable Shell”

worse - a situation in which SIGCHLD arrives while the shell is adding the job, the parent
should block SIGCHLD until after it completed adding the job to the list. If the SIGCHLD
signal is delivered to the shell while the shell blocks this signal, it is marked pending and
will be received as soon as the shell unblocks this signal.

Use the provided helper functions in signal support.c to block and unblock sig-
nals, which in turn rely on sigprocmask(2). To set up signal handlers, they use the
sigaction(2) system call with sa flags set to SA RESTART. The mask of blocked
signals is inherited when fork() is called. Consequently, the child will need to unblock
any signals the parent had blocked before calling exec().

3.2 Process Groups

User jobs may involve multiple processes. For instance, the command line input ls |
grep filename requires that the shell start two processes, one to execute the ls and
the other to execute the grep command. Aside from this example, child processes that
a user program may start4 should usually be part of the same job so that the user can
manage them as one unit. To help manage these scenarios, Unix introduced a way to
group processes that makes it simpler for the shell and for the user to address them as
one unit.

Each process in Unix is part of a group. Process groups are treated as an ensemble for the
purpose of signal delivery and when waiting for processes. Specifically, the kill(2),
killpg(2), and waitpid(2) system calls support the naming of process groups as
possible targets5. In this way, if a user wants to terminate or stop a job, it is possible for
the shell to send a termination or stop signal to a process group that contains all processes
that are part of this job. To facilitate this mechanism the shell must arrange for process
groups to be created and for processes to be assigned to these groups.

Each process group has a designated leader, which is one of the processes in the group. To
create a new group with itself as the leader, a process simply calls setpgid(0, 0). The
process group id of a process group is equal to the process id of the leader. Child processes
inherit the process group of their parent process initially. They can then form their own
group if desired, or their parent process can place them into a different process group via
setpgid(). The shell must create a new process group for each job and make sure that
all processes that will be created for this job become members of this group. Note that
while the process group management facilities are available to all user programs, only
shell programs will typically make use of them – for most other programs, the default
behavior of inheriting the parent’s process group is a desirable default.

In addition to signals and waitpid, process groups are used to manage access to the ter-
minal, as described next.

4For instance, the ‘make‘ utility program starts many other processes such as compilers and linkers.
5Note the idiosynchracies of the API: kill(-pid, sig) does the same as killpg(pid, sig). You can use either,

but make sure to use the correct sign corresponding to the call you use.

Created by G. Back (gback@cs.vt.edu) 3 September 11, 2024

CS3214 Fall 2024 Project 1 - “Customizable Shell”

3.3 Managing Access To The Terminal

Running multiple processes on the same terminal creates a sharing issue: if multiple pro-
cesses attempt to read from the terminal, which process should receive the input? Sim-
ilarly, some programs - such as vi - output to the terminal in a way that does not allow
them to share the terminal with others. 6

To solve this problem, Unix introduced the concept of a foreground process group. The
kernel maintains such a group for each terminal. If a process in a process group that is not
the foreground process group attempts to perform an operation that would require exclu-
sive access to a terminal, it is sent a signal: SIGTTOU or SIGTTIN, depending on whether
the use was for output or input. The default action taken in response to these signals is to
suspend the processes in that group. If that happens, the processes’ parent (i.e., your shell)
can learn about this status change by calling waitpid(). WIFSTOPPED(status)will be
true in this case. To allow these processes to continue, their process group must be made
the foreground process group of the controlling terminal via a call to tcsetpgrp(), and
then the process group must be sent a SIGCONT signal. The shell will typically take this
action in response to a ’fg’ command issued by the user.

Signals that are sent as a result of user input, such as SIGINT or SIGTSTP, are also sent
to a terminal’s foreground process group. Note that this sending of signals occurs auto-
matically by the operating system, it is not an action the shell takes. Delivering this signal
to an entire process group makes it so that when a user hits Ctrl-c to terminate a job such
as ls | grep filename both the process running ls and the process running grep
will receive the SIGINT signal, informing them of the user’s desire to terminate them. To
ensure that such signals are delivered to the correct process group, the shell must arrange
for these process groups to exist and be populated with the correct processes, and it must
inform the OS kernel which process group the user intends to run in the foreground at a
given point in time.

3.4 Managing The Terminal’s State

Many years ago, most Unix terminals were actual devices that had a console and a key-
board and that were connected to the main computer with some kind of serial interface
such as RS-232. To control those devices, the OS device drivers would need to control a
set of input and output flags collectively known as the terminal state. In modern systems,
the most commonly used terminal type is a pseudo-terminal (pty) connected to an ssh
network connection, yet this model still exists. You can type stty -a to see what those
flags are, though you probably won’t care about their details.

Some processes change the state of the terminal in a certain way. For instance, vim puts
the terminal in so-called “raw” mode where it receives keystrokes as they are typed (as
opposed to “cooked” which requires the user to end a line with the enter key before it
is received by a program). So does bash and in fact, your shell, which uses the readline

6Note that regular output via write(2) does not require exclusive access, unless the terminal’s ’tostop’
flag is set. The terminal will simply interleave such output.

Created by G. Back (gback@cs.vt.edu) 4 September 11, 2024

CS3214 Fall 2024 Project 1 - “Customizable Shell”

library, does this, too, while reading user input.

This raises a management issue when the user switches between the shell’s command line
and foreground process jobs. For instance, a user may start vim, then use Ctrl-z to stop it,
run some other job in the foreground, then stop it, resume vim, exit vim, and resume the
second job.

In this case, it is necessary to restore the terminal state whenever the vim process is re-
sumed to what it was before vim was stopped. Interestingly, it is possible for a process to
perform such restoration itself (in fact, vim does this by handling the SIGCONT signal).

However, if the shell performed such saving and restoration transparently, then any pro-
gram that manipulates its terminal state could be run under a job control regime. Specif-
ically, your shell should save the state of the terminal when a job process is suspended
and restore it when the job is continued in the foreground by the user.7

When the shell returns to the prompt, it must make itself the foreground process group of
the terminal. In this case, it should also restore a known good terminal state. Your shell
should sample this known good terminal state when it starts. You may find the functions
provided in termstate management.c useful, which already handle most of the logic.

This known good state is also the state that the terminal will be in if a new job is started
by the user. Therefore, programs that are agnostic with respect to the state of the terminal
will continue to work. However, there has to be a way for the user to change the default
terminal settings programs encounter when they are run (as well as the terminal settings
that are in effect while the shell is being used by a user). The stty command exists for
this purpose. When run, it will display and/or change existing settings to suit a user’s
preferences.

The shell must respect changes made by stty and replace its known good terminal state
with the state the terminal was put in by the stty command. To that end, the following
convention is used: if any foreground job exits with a success (zero) exit status, the current
terminal state will be sampled by the shell and becomes the new known good state (as
per the user’s intent.) Your shell should do this sampling. Make sure not to sample the
terminal state in these cases:

• A job exits that was not started as a foreground job.

• A job exits that is not a foreground job at the time of its exit.

• A job terminates with a signal.

• A job exits but the exit status code is nonzero.

For jobs that consists of multiple processes, consider the last process in the pipeline. You
will note that this heuristics is not perfect – it will in fact sample any successfully exiting

7This is a recommendation (not a requirement though) spelled out in the POSIX standard. Unfortunately,
only the Korn shell (ksh) actually does that in practice, other widely used shells (bash, zsh, dash) do not.
Under those shells, job-control unaware programs would fail.

Created by G. Back (gback@cs.vt.edu) 5 September 11, 2024

CS3214 Fall 2024 Project 1 - “Customizable Shell”

job’s terminal state rather than just where the user intends it – but this doesn’t pose a big
problem in practice since the majority of programs doesn’t reprogram the terminal.

3.5 Pipes and I/O Redirection

A pipeline of commands is considered one job. All processes that form part of a pipeline
must thus be part of the same process group, as already discussed in Section 3.3. Note
that all processes that are part of a pipeline are children of the shell, e.g., if a user runs
a | b then the process executing b is not a child process of the process executing the
program a.

To implement the pipes itself, use the pipe(2) system call, or alternatively the pipe2(2)
GNU extension. The latter allows you to set flags on the returned file descriptors such as
O CLOEXEC. A pipe must be set up by the parent shell process before a child is forked.
Forking a child will inherit the file descriptors that are part of the pipe. The child must
then redirect its standard file descriptors to the pipe’s input or output end as needed using
the dup2(2) system call. If the user used the |& instead of the | symbol, both standard
output and standard error should be redirected to the pipe.

Although the parent shell process creates pipes for each pair of communicating children
before they are forked, it will not itself write to the pipes or read from the pipes it creates.
Therefore, you must make sure that the parent shell process closes the file descriptors
referring to the pipe’s ends after each child was forked. This is necessary for two reasons:
first, in order to avoid leaking file descriptors. Second, to ensure the proper behavior of
programs such as /bin/cat if the user asks the shell to execute them. To see why, we
must first discuss what happens to file descriptors on fork(), close(), and exit().

Each file descriptor represents a reference to an underlying kernel object. fork() makes
a shallow copy of these descriptors. After fork(), both the child and the parent process
have access to any object the parent process may have created (i.e., open files or other
kernel objects). Closing a file descriptor in the (parent) shell process affects only the cur-
rent process’s access to the underlying object. Hence when the parent shell closes the file
descriptor referring to the pipe it created, the child processes will still be able to access
the pipe’s ends, allowing it to communicate with the other commands in the pipeline.

The actual object (such as a pipe or file) is destroyed only when the last process that has at
least one open file descriptor referring to the object closes the last file descriptor referring
to it. If you failed to close the pipe’s file descriptors in the parent process (your shell),
you compromise the correct functioning of programs that rely on taking action when
their standard input stream signals the end of file condition. For instance, the /bin/cat
program will exit if its standard input stream reaches EOF, which in the case of a pipe
happens if and only if all descriptors pointing to the pipe’s output end are closed. So if
cat’s standard input stream is connected to a pipe for which the shell still has an open file
descriptor, cat will never “see” EOF for its standard input stream and appear stuck.

Lastly, note that when a process terminates for whatever reason, via exit() or via a sig-
nal, all file descriptors it had open are closed by the kernel as if the process had called

Created by G. Back (gback@cs.vt.edu) 6 September 11, 2024

CS3214 Fall 2024 Project 1 - “Customizable Shell”

close() before terminating. This means that you do not need to worry about making
sure that file descriptors you open for the shell’s child processes are closed after these
child processes exit. However, since the shell is a long running program that does not
exit between user commands, the shell must close its own copies of these file descrip-
tors to avoid above-mentioned leakage. If it did not, it would eventually run out of file
descriptors because the OS imposes a per-process limit on their number.

Although the processes that are part of pipeline typically interact with each other through
the pipe that connects their standard streams, they are still independent processes. This
means they can exit, or terminate abnormally, independently and separately. When your
shell calls waitpid() to learn about these processes’ status changes, it will learn about
each one separately. You will need to map the information you learn about one process
to the job to which it belongs, using a suitable data structure you define in your shell
implementation.

Here is a brief table summarizing facts about the status changes and the corresponding
macros you can apply to the status (out) parameter8 returned by waitpid:

Event How to check for it Additional info Process
stopped?

Process
dead?

User stops fg pro-
cess with Ctrl-Z

WIFSTOPPED WSTOPSIG equals
SIGTSTP

yes no

User stops process
with stop (cush) or
kill -STOP (bash)

WIFSTOPPED WSTOPSIG equals
SIGSTOP

yes no

non-foreground
process wants
terminal access

WIFSTOPPED WSTOPSIG equals
SIGTTOU or SIGT-
TIN

yes no

process exits via
exit()

WIFEXITED WEXITSTATUS has
return code

no yes

user terminates pro-
cess with Ctrl-C

WIFSIGNALED WTERMSIG equals
SIGINT

no yes

user terminates pro-
cess with kill

WIFSIGNALED WTERMSIG equals
SIGTERM

no yes

user terminates pro-
cess with kill -9

WIFSIGNALED WTERMSIG equals
SIGKILL

no yes

process has been
terminated (general
case)

WIFSIGNALED WTERMSIG equals
signal number

no yes

Additional information can be found in the GNU C library manual, available at http://

8A common mistake some students make is to confuse the exit status and the job status. The exit status
is a single integer value that a child process can pass to the exit(2) system call and which the parent can
retrieve via waitpid(), whereas the job status is an internal shell variable/struct field that records the
shell’s knowledge about the job control status of a job, e.g., whether it’s running or stopped. waitpid will
also use status to report when processes where stopped (or terminated) by a signal, so your shell must use
the process status information obtained via waitpid to update the job’s job control status as necessary.

Created by G. Back (gback@cs.vt.edu) 7 September 11, 2024

http://www.gnu.org/s/libc/manual/html_node/index.html
http://www.gnu.org/s/libc/manual/html_node/index.html
http://www.gnu.org/s/libc/manual/html_node/index.html
http://www.gnu.org/s/libc/manual/html_node/index.html
http://www.gnu.org/s/libc/manual/html_node/index.html
http://www.gnu.org/s/libc/manual/html_node/index.html
http://www.gnu.org/s/libc/manual/html_node/index.html
http://www.gnu.org/s/libc/manual/html_node/index.html

CS3214 Fall 2024 Project 1 - “Customizable Shell”

www.gnu.org/s/libc/manual/html_node/index.html. Read, in particular, the
sections on Signal Handling and Job Control.

3.6 Use of posix spawn

In a 2019 paper published at the HotOS workshop, Baumann et al [1] criticized the use and
teaching of the Unix style of creating a new process by first creating a clone via fork(),
then customizing the new process’s environment through actions the clone performs on
itself before executing a new program. A key weakness of this approach is that it is incom-
patible with multithreaded programs. They propose the use of an existing alternative API
instead, i.e., posix spawn(3). This call combines fork() and exec() into one, and it
also can be customized so that the child process will perform the necessary operations to
set up or join a process group and to redirect inherited file descriptors as desired.

However, posix spawn as defined by POSIX lacks one important feature, which is to
provide the child process with ownership of its terminal. This action cannot be per-
formed in the parent since doing so would create a race condition: the child may reach
a point where it assumes it had terminal ownership before the parent assigns ownership
to it. For this project, you have access to a version of posix spawn that includes a non-
portable extension posix spawnattr tcsetpgrp np(posix spawnattr t *attr,
int fd) that allows you to provide a file descriptor referring to the terminal for which
the child process should acquire ownership. 9

For your implementation, you are encouraged to use posix spawn in lieu of fork +
exec. If you choose to do so, your implementation will avoid the potential sources of
bugs that the use of fork() introduces, such as inadvertently attempting to update par-
ent data structures in the child process, and in general will exhibit to easier-to-understand
control flow and memory access semantics. Control flow will be traditional and linear:
posix spawn will be called once, and return once, like any ordinary function. It will
spawn a new program in a new process as a side effect. This child process will never
directly access data structures inherited from the parent, though it relies on inheriting
open file descriptors like in the fork case. posix spawn also does not change the fact
that the created process will immediately run concurrently with the parent process when
it returns. In other words, you may think of it as a combination of fork and exec, not of
fork, exec, and wait.

However, it is difficult to use posix spawn successfully if you do not understand how
fork and exec interact with file descriptors and process groups, so the explanation in the
preceding sections still applies and must be thoroughly understood. Everything related
to job management applies equally as it is independent of the method used to start the
child processes.

When using posix spawn, you must observe all of the following hints

• Use the posix spawnp variant to be able to find programs in the user’s path.

9GNU libc version 2.35 includes support for an alternative method of performing this, but it is not
installed on rlogin at the time of this writing.

Created by G. Back (gback@cs.vt.edu) 8 September 11, 2024

http://www.gnu.org/s/libc/manual/html_node/index.html
http://www.gnu.org/s/libc/manual/html_node/index.html
http://www.gnu.org/s/libc/manual/html_node/Signal-Handling.html#Signal-Handling
http://www.gnu.org/s/libc/manual/html_node/Job-Control.html#Job-Control

CS3214 Fall 2024 Project 1 - “Customizable Shell”

• Use posix spawn file actions adddup2 to wire up pipe file descriptors and
handle the redirection of standard error.

• Use posix spawn file actions addopen to wire up I/O redirection from/to
files.

• Use posix spawnattr setpgroup along with the POSIX SPAWN SETPGROUP flag
to establish or join a new process group.

• Use posix spawnattr tcsetpgrp np along with the POSIX SPAWN TCSETPGROUP
flag to give the child’s process group terminal ownership.

• Use posix spawnattr setflags to set the desired flags. You may include
POSIX SPAWN USEVFORK to make use of the specialized (and slightly faster)
vfork() system call. Note that you may call this function only once since later
calls will replace the flags set in earlier ones. Thus, you need to bitwise combine all
necessary flags into one value before calling it with this value.

• You do not need to perform a setpgid() call in the parent since the race condition
necessitating this call no longer exists: the call to spawn won’t return until after the
child has been placed into its process group.

• You will need to pass the current environment as the last argument. Add an external
declaration like so extern char **environ;.

• Lastly, note that the resulting code won’t necessarily be shorter (my version is 94 vs.
67 lines for the fork/exec variant), but very likely less confusing.

• The Makefile will set the correct include path and library flags to link with the re-
quired version of posix spawnp, which overrides the version in the installed GNU
C library. You will need to build the library first, use

(cd posix_spawn; make)

to that end.

4 Use of Git

You will use Git for managing your source code. Git is a distributed version control
system in which every working directory contains a full repository, and thus the system
can be used independently of a (centralized) repository server. Developers can commit
changes to their local repository. However, in order to share their code with others, they
must then push those commits to a remote repository. Your remote repository will be
hosted on git.cs.vt.edu, which provides a facility to share this repository among
group members. For further information on git in general you may browse the official
Git documentation: http://git-scm.com/documentation, but feel free to ask ques-
tions on the forum as well! The use of git (or any distributed source code control system)

Created by G. Back (gback@cs.vt.edu) 9 September 11, 2024

http://git-scm.com/
git.cs.vt.edu
http://git-scm.com/documentation

CS3214 Fall 2024 Project 1 - “Customizable Shell”

may be new to some students, but it is a prerequisite skill for most programming related
internships or jobs.

You will use a departmental instance of Gitlab for this class. You can access the instance
with your SLO credentials at https://git.cs.vt.edu/.

The provided base code for the project is available on Gitlab at https://git.cs.vt.edu/cs3214-
staff/cs3214-cush,

One team member must fork this repository by viewing this page and clicking the fork
link. This will create a new repository for you with a copy of the contents. From there
you must view your repository settings, and set the visibility level to private. On the
settings page you may also invite your other team member to the project so that they can
view and contribute.

Group members may then make a local copy of the repository by issuing a git clone
<repository> command. The repository reference can be found on the project page
such as git@git.cs.vt.edu:teammemberwhoclonedit/cs3214-cush.git To clone
over SSH (which you may need to do on rlogin), you will have to add an SSH public
key to your profile by visiting https://git.cs.vt.edu/-/user_settings/ssh_
keys. This key is separate from the key you added to your /.ssh/authorized keys
file. Although you could use the same key pair you use to log into rlogin, we recommend
using a separate key pair. This way you can avoid storing the private key you use to
access rlogin on rlogin itself.

If updates or bug fixes to this code are required, they will be announced on the forum.
You will be required to use version control for this project. When working in a team, both
team member should have a roughly equal number of committed lines of code to show
their respective contributions.

Please note. To facilitate the automated grading of your git usage, please follow the
following rules:

• Do not rename the repo when you fork it.

• Do not create a git group; fork the repo under the namespace of one of the two group
members.

• Make sure that, once you have finished, your final product will be on the master
branch.

• Make sure that the git commit log on this branch shows the contributions of both
team partners under their CS pid.

• You may use branches during development, but if you do, make sure to merge those
branches. Don’t squash your commits when you do so.

• You must use git.cs.vt.edu and not any external git server.

Created by G. Back (gback@cs.vt.edu) 10 September 11, 2024

https://about.gitlab.com/
https://git.cs.vt.edu/
https://git.cs.vt.edu/cs3214-staff/cs3214-cush
https://git.cs.vt.edu/cs3214-staff/cs3214-cush
https://git.cs.vt.edu/-/user_settings/ssh_keys
https://git.cs.vt.edu/-/user_settings/ssh_keys

CS3214 Fall 2024 Project 1 - “Customizable Shell”

4.1 Code Base

To build the provided code, run make in the src directory. (Don’t forget to build the
posix spawn library first.)

The code contains a command line parser that implements the following grammar:

cmd_line : cmd_list

cmd_list :
| pipeline
| cmd_list ’;’
| cmd_list ’&’
| cmd_list ’;’ pipeline
| cmd_list ’&’ pipeline

pipeline : command
| pipeline ’|’ command
| pipeline ’|&’ command

command : WORD
| input
| output
| command WORD
| command input
| command output

input : ’<’ WORD

output : ’>’ WORD
| ’>>’ WORD
| ’>&’ WORD

Look at the provided cush.c main function to see how to invoke the parser. If a command
line is semantically correct, the parser code will create a ast command line data struc-
ture, which refers to a list of ast pipeline structures. Each ast pipeline is used
to create a job. It may consist of one or more individual commands that form a pipeline.
Each command is represented as a ast command structure. Study the definitions of these
structures.

By default, the provided code will read a line, parse it, and dump the parsed command
line to stdout.

The files signal support.c and termstate management.c contain a number of util-
ity functions for dealing with signals and managing the terminal state, which do most of
the heavy lifting for you. We strongly recommend you use these functions rather than
directly calling the functions described in the textbook.

Created by G. Back (gback@cs.vt.edu) 11 September 11, 2024

CS3214 Fall 2024 Project 1 - “Customizable Shell”

5 Builtins

The basic builtins our tests expect include kill, fg, bg, jobs, stop, exit.

In addition, you should implement at least 2 builtin commands or a functionality exten-
sion, a simple one and a more complex one. Ideas for simple builtins include:

• A custom prompt (e.g. outputting hostname and current directory)

• Setting and unsetting environment variables

• cd to change the current directory (should support changing to the home directory
when invoked with just cd)

• Other simple commands

Ideas for “more complex” builtins include

• A user-customizable prompt (e.g. like bash’s PS1) that provides a means for the
user to set the prompt. Implement a substantial subset of ‘PS1‘’s prompt escape
sequences, see here.

• Command-line history (perhaps using’s GNU History library) (this should include
the features commonly provided by GNU history, such as event designators. If GNU
history is properly integrated, these will come for free.

• Glob expansion (e.g., *.c). You may use GNU’s glob library, see glob(3).

• Support for aliases (definition and expansion)

• Shell variables

• Timing commands: ”time” or a builtin version time-outs.

• A directory stack maintained via pushd, popd, etc.

• Backquote substitution

• Smart command-line completion, i.e., help with mistyped commands

• Embedding applications: scripting languages, web servers, etc.

Generally, we expect for more complex builtins to add significant value for the user.

A side-note on Unix philosophy - in general, Unix implements functionality using many
small programs and utilities. As such, built-in commands are often only those that must
be implemented within the shell, such as cd. In addition, essential commands such as
’kill’ are often built-in to make sure an operator can execute those commands even if no
new processes can be forked. Your builtins should generally stay with this philosophy
and implement only functionality that is not already available using Unix commands or
that would be better implemented using separate programs. If in doubt, ask.

Created by G. Back (gback@cs.vt.edu) 12 September 11, 2024

https://tldp.org/HOWTO/Bash-Prompt-HOWTO/bash-prompt-escape-sequences.html
https://www.gnu.org/software/bash/manual/html_node/Event-Designators.html

CS3214 Fall 2024 Project 1 - “Customizable Shell”

6 Testing

We will provide a test driver to test your project, and tests for the basic and advanced
functionality. The tests are part of the repository, which may be updated once before the
deadline.

The basic and advanced tests are also in the Gitlab repository that you forked to start the
project. If updates to the tests come out you will have to pull from the remote repository
to update your local copy.

Note: you are required to add tests for the builtin commands you add, using the example.

7 Grading

Rubrics. This project will account for 140 points. 50 points will be assigned for passing
the base tests. 50 points for advanced tests, and up to 20 additional points can be earned
through builtins. Builtins requires tests to be considered for credit.

10 points are awarded for correct use of version control, and 10 points for documenta-
tion. In addition, deductions may be taken for deficiencies in coding style and lack of
robustness.

Coding Style. Your coding style should match the style of the provided code. You
should follow proper coding conventions with respect to documentation, naming, and
scoping.

You must check the return values of all system calls and library functions, with the sole
exception of malloc(3) or calloc(3). (Production code would need to check for those as
well; this is a simplification for this project.) This requirement includes calls such as
kill(2) and close(2).

You may not use unsafe string functions such as strcpy() or strcat(), see the website
for a complete list.

Submission. You must submit a design document, README.txt, as an UTF-8 encoded
Unicode document using the following format to describe your implementation:

Student Information

<Student 1 Information>
<Student 2 Information>

How to execute the shell

<describe how to execute from the command line>

Created by G. Back (gback@cs.vt.edu) 13 September 11, 2024

CS3214 Fall 2024 Project 1 - “Customizable Shell”

Important Notes

<Any important notes about your system>

Description of Base Functionality

<describe your IMPLEMENTATION of the following commands:
jobs, fg, bg, kill, stop, \ˆC, \ˆZ >

Description of Extended Functionality

<describe your IMPLEMENTATION of the following functionality:
I/O, Pipes, Exclusive Access >

List of Additional Builtins Implemented

(Written by Your Team)
<builtin name>
<description>

The TA will assign credit only for the functionality for which test cases and documen-
tation exist.

You must submit a .tar.gz file of your ’src’ directory, which contains a Makefile. ’src’
directory must appear as a subdirectory in your tar file. You need to run ’make clean’
on your directory before you create your tarball. Make sure to also delete all temporary
folders and files (i.e. clean your submission to pertinent files).

Please use the submit.py script or web page and submit your tar file under ’p1’. Only one
group member needs to submit. See the website for further submission instructions.

Good Luck!

References

[1] Andrew Baumann, Jonathan Appavoo, Orran Krieger, and Timothy Roscoe. A fork()
in the road. In Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS
’19, page 14–22, 2019.

Created by G. Back (gback@cs.vt.edu) 14 September 11, 2024

	Introduction
	Base Functionality
	Strategy
	Handling SIGCHLD To Process Status Changes
	Process Groups
	Managing Access To The Terminal
	Managing The Terminal's State
	Pipes and I/O Redirection
	Use of posix_spawn

	Use of Git
	Code Base

	Builtins
	Testing
	Grading

