
Linking and Loading - Part III

Godmar Back

Virginia Tech

October 1, 2024

Godmar Back Linking & Loading III 1/9 1 / 9

Software Engineering Aspects

source1.c: (C source code)
(#include “header1.h”, #include “header2.h”)
….

source1.s
Assembly Code

source1.o
Object Code

source2.s
Assembly Code

source2.o
Object Code

header1.h header2.h header3.h

main (Executable)

Process1

Physically Addressed RAM

Preprocessor

Compiler

Assembler

loader/
dynamic
linkerMMU

Run Time

Load Time

Link Time

Compile Time

other programs

Process2 Process3

Linker

source2.c: (C source code)
(#include “header2.h”, #include “header3.h”)
….

+ static
libraries

+ dynamic libraries

Figure 1: Compilation, Linking, and Loading in a typical System

Godmar Back Linking & Loading III 2/9 2 / 9

Static Libraries

Idea: precompile commonly used functions into object .o modules, then package
those .o modules into .a archives called static libraries

.a archives are maintained by the ar(1) command, which creates simple sequential archives
NB: since .o modules are either included in their entirety, or not at all, typical libraries such
as the C library (libc) or the Math library (libm) thus contain thousands of .o files

Questions
how does the linker select which .o modules to include in the linking process?
how are dependencies handled between libraries, i.e., if there is an external reference R in
module1.o in library A that is defined in module2.o in library B?
how expressive/powerful are static libraries as a package system?

Godmar Back Linking & Loading III 3/9 3 / 9

A closer look at the linking process (sans libraries)

The linker processes .o modules in the order given on the command line

Maintains set D of global symbols that have been defined by some already
processed module

Maintains set U of global symbols that have been referenced by some already
processed module but for which no definition was seen yet

For each .o module processed, add new external references encountered to U
unless they are already in D

Add to D, and remove (if applicable) from U the global symbols defined by this
.o module (if already in D, report “multiply defined” error)

If at the end there are any symbols left in U, report “undefined symbol” failure

Side note: this discussion applies to global symbols only. Local symbol
references are always resolved from the corresponding local symbol definition
(which exists if the code compiled correctly)

Godmar Back Linking & Loading III 4/9 4 / 9

Extending the linking process to static libraries

Rule: when processing a library, the linker will include a .o module from this
library if and only if it defines a symbol that is currently in set U

”currently” refers to the position in the processing order given on the command line
.o files in the same library that define symbols referenced by other .o modules in the library
are included

Advantages:
Include only those .o files that are needed
Can override a library symbol by specifying a definition in a library that will be listed first

Disadvantages:
Linking behavior depends on the exact order in which .o files and libraries are listed on the
command line
May be necessary to list libraries in a certain order (classic -lXm -lXt -lX11), or even
multiple times if they have mutual dependencies, or use special linker grouping option
(--start-group/--end-group)
Error prone and confusing

Linker maps help to track down how the linker resolved symbols

Godmar Back Linking & Loading III 5/9 5 / 9

Drawbacks of Static Libraries

Duplicate code if functionality is used by many programs
e.g., the C library
Cost in terms of storing larger executables in the file system
Cost in terms of needing more memory for each process that loads these executables;
inability to share this memory between processes even if they make use of the same library

Any updates requires recompilation (and redistribution) of each executable that
uses the code in question

Costly to push updates to system libraries

Side Note: the inverse is that statically linked binaries come with all
dependencies included, and will work as long as the underlying OS supports the
system call API/ABI (Linux still runs binaries built in the 1990’s)

Godmar Back Linking & Loading III 6/9 6 / 9

Shared Libraries

aka shared objects (.so), or on Windows as dynamic-link libraries (DLL)

are loaded into a process’s virtual address space at run time

this is implemented by cooperation of the build tools with the dynamic
linker/loader (ld-linux.so/ld-linux-x86-64.so in Linux)

the executable still contains external references (U) that will be resolved at load time
recursive: a dynamically linked library may in turn have dependencies

also directly accessible via dlopen() for programs wishing to load shared objects
at run time, as done in plugin-based systems or applications

flexible API, see [1] for details

such shared objects’ memory can shared by multiple processes, even if located at
different virtual addresses (memory must be read-only and content not be
dependent on the position at which it is mapped)

retains (mostly) the same semantics as if the program and libraries had been
linked statically

Godmar Back Linking & Loading III 7/9 7 / 9

Implementation of Shared Libraries

Position-Independent Code (handles intra-library references)
64-bit x86: PC-relative addressing mode ($rip)
32-bit x86: requires “PC materialization” trick to obtain value of $eip

Indirection (needed for inter-library references, or references from executable to
library)

If a library defines global function f or variable x, the addresses f and &x are not
known until the library is loaded

Solution: indirect function calls (via entries in PLT (Procedure Linkage Table))
On-demand loading via trampolines: first access triggers jump into dynamic linker
subsequent jumps go straight to loaded function

In general, shared libraries introduce a marginal cost at runtime

Godmar Back Linking & Loading III 8/9 8 / 9

References

[1] David M. Beazley, Brian D. Ward, and Ian R. Cooke.
The inside story on shared libraries and dynamic loading.
Scientific Programming, pages 90–97, Sep/Oct 2001.

Godmar Back Linking & Loading III 9/9 9 / 9

