
1

Instructor : Huaicheng Li

Sept 12 2024

2

q Project 1 is released!
§ Lab session next week, details to be announced soon

3

q Recap on file descriptors and pipes
q Signals

§ Why do we need it?
§ How does it work?
§ How do we use it?
§ Cute demos!

4

Open File Table

vnode Table

/dev/pty/7; refcnt = 1

/tmp/file1; refcnt = 2

/tmp/file2; refcnt = 1

Network; refcnt = 1

r/w pos = ?
refcnt = 4

r/w pos = 200
refcnt = 1

r/w pos = 250
refcnt = 1

r/w pos = 500
refcnt = 3

r/w pos = ?
refcnt = 1

r/w pos = ?
refcnt = 1

Pipe (Rd) refcnt = 1

r/w pos = ?
refcnt = 1

Pipe (Wr); refcnt = 1

0

1

2

3

4

5

0

1

2

3

4

5

P
ro

ce
ss

 1
P

ro
ce

ss
 2

per-process
file descriptor table

5

q Writers:
§ can store data in the pipe as long as there is space
§ blocks if pipe is full until reader drains pipe

q Readers:
§ drains pipe by reading from it
§ if empty, blocks until writer writes data

q Pipes provide a classic “bounded buffer” abstraction that
§ is safe: no race conditions, no shared memory, handled by kernel
§ provides flow control that automatically controls relative progress: e.g., if writer is

BLOCKED, but reader is READY, it’ll be scheduled. And vice versa.
§ Created unnamed; file descriptor table entry provide for automatic cleanup

write read
data

6

q For inter-process communication
q Process control (e.g., pause job execution)
q Handling unexpected conditions (e.g., segfault)

q Async event handling (e.g., timeout, background job)
q Debugging (inspect program execution on the fly)
q ...

7

q Unix Signals present a uniform mechanism that allows the kernel to inform processes
of events of interest from a small predefined set (<32)
§ Traditionally represented by their integer number
§ Sometimes associated with some optional additional information

q Two types of signals
§ Synchronous: caused by something the process did (aka “internally generated event”)
§ Asynchronous: not related to what the process currently does (aka “externally generated event”)

q Uniform API includes provisions for programs to determine actions to be taken for
signals, which include
§ terminating the process, optionally with core dump
§ ignoring the signal
§ invoking a user-defined handler
§ stopping the process (in the job control sense)
§ continuing the process

q Sensible default actions support user control and fail-stop behavior when faults occur

8

q SIGILL (1) Illegal Instruction
SIGABRT (1) Program called abort()
SIGFPE (1) Floating Point Exception (e.g. integer division by zero)
SIGSEGV (1) Segmentation Fault - catch all for memory and privilege violations
SIGPIPE (1) Broken Pipe - attempt to write to a closed pipe
SIGTTIN (2) Terminal input - attempt to read from terminal while in background
SIGTTOU (2) Terminal output - attempt to write to terminal while in background

(1) Default action: terminate the process
(2) Default action: stop the process

9

q SIGINT (1, 3) Interrupt: user typed Ctrl-C
SIGQUIT (1, 3) Interrupt: user typed Ctrl-\
SIGTERM (3) User typed kill pid (default)
SIGKILL (2, 3) User typed kill -9 pid (urgent)
SIGALRM (1, 3) An alarm timer went off (alarm(2))
SIGCHLD (1) A child process terminated or was stopped
SIGTSTP (1) Terminal stop: user typed Ctrl-Z
SIGSTOP (2) User typed kill -STOP pid

(1) These are sent by the kernel, e.g., terminal device driver
(2) SIGKILL and SIGSTOP cannot be caught or ignored
(3) Default action: terminate the process

10

q First, a signal is sent (via the kernel) to a target process
§ Some signals are sent internally by the kernel (e.g. SIGALRM, SIGINT, SIGCHLD)
§ User processes can use the kill(2) system call to send signals to each other (subject to

permission)
§ The kill(1) command or your shell’s built-in kill command do just that.
§ raise(3) sends a signal to the current process

q This action makes the signal become “pending”

q Then (possibly some time later) the target process receives the signal and performs
the action (ignore, terminate, or call handler)

q Aside: the details of how processes learn about pending signals and how they react
to them are complicated, but handled by the kernel

q Here we focus on what user programmers need to observe when using signals

11

q Kernel sends a signal to a destination process by updating some state in the
context of the destination process
§ divide-by-zero (SIGFPE)
§ Termination of a child process (SIGCHLD)

q Another process has invoked kill() system call to explicitly request the
kernel to send a signal to the destination process

q raise(), signaling within the same process

12

q Pending: sent but not yet received
§ At most one pending signal of any particular type
§ Signals are not queued (On/Off)

q A process can block the receipt of certain signals
§ Blocked signal can be delivered, but will not be received until the signal is unblocked

q A pending signal is received at most once
q Kernel maintains pending and blocked bit vectors in the context of each

process
§ Pending: kernel sets/clears certain bits when a signal is delivered/received
§ Blocked: sigprocmask(), aka, signal mask

13

q A destination process receives a signal when it is forced by the kernel to
react in some way to the delivery of the signal

q Possible reactions
§ Ignore the signal (do nothing)
§ Terminate the process (e.g., with core dump)
§ Catch the signal by executing a user-level function called signal handler

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler
returns to
next instruction

Icurr
Inext

(1) Signal received by
process

14

q Each signal represents a bit in the target process’s pending mask saying
whether the signal has been sent (but not yet received)

q Thus, sending a signal that’s already pending has no effect

q This applies to internally triggered signals as well: notably, multiple children
that terminate while SIGCHLD is pending will result in a single delivery of
SIGCHLD

q More like railway signals (on/off) than individual messages

15

16

17

q Is it safe to manipulate data from a signal handler while that same data is being
manipulated by the program that was executing (and interrupted) when the signal was
delivered?

q In general, is it safe to call a function from a signal handler while that same function
was executing when the signal was delivered?

q Answer : it depends.

q POSIX defines a list of functions for which it is safe, so-called async-signal-safe
functions, see signal-safety(7) for a list

q printf() is not async-signal-safe (acquires the console lock)
q Two strategies to write async-signal-safe programs:

§ don’t call async-signal-unsafe function in a signal handler
§ block signals while calling unsafe functions in the main control flow (or when

manipulating shared data)

18

user mode

kernel mode

handler

block(SIGNAL)

signal sent
Signal handler returns
sigreturn()

unblock(SIGNAL)signal pending

Protected Section Unprotected Section

- If signals are masked/blocked most of the time in the main program, signal handlers can call most
functions, but signal delivery may be delayed.

- If a signal is not masked most of the time, signal handlers must be very carefully implemented. In
practice, coarse-grained solutions are perfectly acceptable unless there is a requirement that
bounds the maximum allowed latency in which to react to a signal.

- Side note: OS face the same trade-off when implementing (hardware) interrupt handlers.

19

q Concurrent with main program
q Guidelines to avoid trouble

§ Keep handlers simple
§ Only use async-signal-safe functions (no printf)
§ Save and restore errno on entry and exit to avoid overwrite
§ Temporarily blocking all signals to protect access to shared data structures
§ Declare global variables as volatile to prevent compiler from storing them in a

register
§ Declare global flags as volatile sig_atomic_t

20

q Uniform APIs for programs to determine actions to be taken for signals
§ Terminating the process, core dump
§ Ignoring the signal
§ Invoking a user-defined handler
§ Stop the process
§ Continuing the process

21

q Explicit blocking/unblocking: sigprocmask()

q Others
§ sigemptyset() – create empty set
§ sigfillset() – Add every signal number to set
§ sigaddset() – Add signal number to set
§ sigdelset() – Delete signal number from set

sigset_t mask, prev_mask;
sigemptyset(&mask);
sigaddset(&mask, SIGINT);

/* Block SIGINT and save previous blocked set */
sigprocmask(SIG_BLOCK, &mask, &prev_mask);

/* Code region that will not be interrupted by SIGINT */
/* Restore previous blocked set, unblocking SIGINT */
sigprocmask(SIG_SETMASK, &prev_mask, NULL);

22

q Handler_t *signal(int signum, handler_t *handler)

void sigint_handler(int sig) /* SIGINT handler */
{

printf("So you think you can stop the bomb with ctrl-c, do you?\n");
sleep(2);
printf("Well...");
exit(0);

}

int main()
{

/* Install the SIGINT handler */
if (signal(SIGINT, sigint_handler) == SIG_ERR)

unix_error("signal error");
/* Wait for the receipt of a signal */
pause();
return 0;

}

23

q Kill -9 1000: Send SIGKILL to process 1000
q Kill -9 -1000: Send SIGKILL to every process in process group 1000
q Ctrl-C: SIGINT

q Ctrl-Z: SIGTSTP

24

q One process belongs to one process group
§ getpgrp(), get process group of current process
§ setpgid(): change process group

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

Fore-
ground
job

25

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Signal delivered
to process A

Signal received
to process A

