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q Project 1 is released!
§ Lab session next week, details to be announced soon
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q Recap on file descriptors and pipes
q Signals

§ Why do we need it?
§ How does it work?
§ How do we use it?
§ Cute demos!
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q Writers:
§ can store data in the pipe as long as there is space
§ blocks if pipe is full until reader drains pipe

q Readers:
§ drains pipe by reading from it
§ if empty, blocks until writer writes data

q Pipes provide a classic “bounded buffer” abstraction that
§ is safe: no race conditions, no shared memory, handled by kernel
§ provides flow control that automatically controls relative progress: e.g., if writer is

BLOCKED, but reader is READY, it’ll be scheduled. And vice versa.
§ Created unnamed; file descriptor table entry provide for automatic cleanup

write read
data
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q For inter-process communication
q Process control (e.g., pause job execution)
q Handling unexpected conditions (e.g., segfault)

q Async event handling (e.g., timeout, background job)
q Debugging (inspect program execution on the fly)
q ...
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q Unix Signals present a uniform mechanism that allows the kernel to inform processes 
of events of interest from a small predefined set (<32)
§ Traditionally represented by their integer number
§ Sometimes associated with some optional additional information

q Two types of signals
§ Synchronous: caused by something the process did (aka “internally generated event”)
§ Asynchronous: not related to what the process currently does (aka “externally generated event”)

q Uniform API includes provisions for programs to determine actions to be taken for 
signals, which include
§ terminating the process, optionally with core dump
§ ignoring the signal
§ invoking a user-defined handler
§ stopping the process (in the job control sense)
§ continuing the process

q Sensible default actions support user control and fail-stop behavior when faults occur
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q SIGILL (1) Illegal Instruction
SIGABRT (1) Program called abort()
SIGFPE (1) Floating Point Exception (e.g. integer division by zero)
SIGSEGV (1) Segmentation Fault - catch all for memory and privilege violations
SIGPIPE (1) Broken Pipe - attempt to write to a closed pipe
SIGTTIN (2)   Terminal input - attempt to read from terminal while in background
SIGTTOU (2) Terminal output - attempt to write to terminal while in background

(1) Default action: terminate the process
(2) Default action: stop the process
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q SIGINT (1, 3)       Interrupt: user typed Ctrl-C
SIGQUIT (1, 3)    Interrupt: user typed Ctrl-\
SIGTERM (3) User typed kill pid (default)
SIGKILL (2, 3)      User typed kill -9 pid (urgent)
SIGALRM (1, 3)    An alarm timer went off (alarm(2))
SIGCHLD (1) A child process terminated or was stopped
SIGTSTP (1) Terminal stop: user typed Ctrl-Z
SIGSTOP (2) User typed kill -STOP pid

(1) These are sent by the kernel, e.g., terminal device driver
(2) SIGKILL and SIGSTOP cannot be caught or ignored
(3) Default action: terminate the process
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q First, a signal is sent (via the kernel) to a target process
§ Some signals are sent internally by the kernel (e.g. SIGALRM, SIGINT, SIGCHLD)
§ User processes can use the kill(2) system call to send signals to each other (subject to 

permission)
§ The kill(1) command or your shell’s built-in kill command do just that.
§ raise(3) sends a signal to the current process

q This action makes the signal become “pending”

q Then (possibly some time later) the target process receives the signal and performs 
the action (ignore, terminate, or call handler)

q Aside: the details of how processes learn about pending signals and how they react 
to them are complicated, but handled by the kernel

q Here we focus on what user programmers need to observe when using signals
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q Kernel sends a signal to a destination process by updating some state in the 
context of the destination process
§ divide-by-zero (SIGFPE)
§ Termination of a child process (SIGCHLD)

q Another process has invoked kill() system call to explicitly request the 
kernel to send a signal to the destination process

q raise(), signaling within the same process
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q Pending: sent but not yet received
§ At most one pending signal of any particular type
§ Signals are not queued (On/Off)

q A process can block the receipt of certain signals
§ Blocked signal can be delivered, but will not be received until the signal is unblocked

q A pending signal is received at most once
q Kernel maintains pending and blocked bit vectors in the context of each 

process
§ Pending:  kernel sets/clears certain bits when a signal is delivered/received
§ Blocked: sigprocmask(), aka, signal mask
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q A destination process receives a signal when it is forced by the kernel to 
react in some way to the delivery of the signal

q Possible reactions
§ Ignore the signal (do nothing)
§ Terminate the process (e.g., with core dump)
§ Catch the signal by executing a user-level function called signal handler

(2) Control passes 
to signal handler 

(3) Signal  
handler runs

(4) Signal handler
returns to 
next instruction

Icurr
Inext

(1) Signal received by 
process 
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q Each signal represents a bit in the target process’s pending mask saying 
whether the signal has been sent (but not yet received)

q Thus, sending a signal that’s already pending has no effect

q This applies to internally triggered signals as well: notably, multiple children 
that terminate while SIGCHLD is pending will result in a single delivery of 
SIGCHLD

q More like railway signals (on/off) than individual messages
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q Is it safe to manipulate data from a signal handler while that same data is being 
manipulated by the program that was executing (and interrupted) when the signal was 
delivered?

q In general, is it safe to call a function from a signal handler while that same function 
was executing when the signal was delivered?

q Answer : it depends.

q POSIX defines a list of functions for which it is safe, so-called async-signal-safe 
functions, see signal-safety(7) for a list

q printf() is not async-signal-safe (acquires the console lock)
q Two strategies to write async-signal-safe programs:

§ don’t call async-signal-unsafe function in a signal handler
§ block signals while calling unsafe functions in the main control flow (or when 

manipulating shared data)
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user mode

kernel mode

handler

block(SIGNAL)

signal sent
Signal handler returns
sigreturn()

unblock(SIGNAL)signal pending

Protected Section Unprotected Section

- If signals are masked/blocked most of the time in the main program, signal handlers can call most 
functions, but signal delivery may be delayed. 

- If a signal is not masked most of the time, signal handlers must be very carefully implemented. In 
practice, coarse-grained solutions are perfectly acceptable unless there is a requirement that 
bounds the maximum allowed latency in which to react to a signal. 

- Side note: OS face the same trade-off when implementing (hardware) interrupt handlers.
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q Concurrent with main program
q Guidelines to avoid trouble

§ Keep handlers simple
§ Only use async-signal-safe functions (no printf)
§ Save and restore errno on entry and exit to avoid overwrite
§ Temporarily blocking all signals to protect access to shared data structures
§ Declare global variables as volatile to prevent compiler from storing them in a 

register
§ Declare global flags as volatile sig_atomic_t
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q Uniform APIs for programs to determine actions to be taken for signals
§ Terminating the process, core dump
§ Ignoring the signal
§ Invoking a user-defined handler
§ Stop the process
§ Continuing the process
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q Explicit blocking/unblocking: sigprocmask()

q Others
§ sigemptyset() – create empty set
§ sigfillset() – Add every signal number to set
§ sigaddset() – Add signal number to set
§ sigdelset() – Delete signal number from set

sigset_t mask, prev_mask;
sigemptyset(&mask);
sigaddset(&mask, SIGINT);

/* Block SIGINT and save previous blocked set */
sigprocmask(SIG_BLOCK, &mask, &prev_mask);

/* Code region that will not be interrupted by SIGINT */
/* Restore previous blocked set, unblocking SIGINT */
sigprocmask(SIG_SETMASK, &prev_mask, NULL);
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q Handler_t *signal(int signum, handler_t *handler)

void sigint_handler(int sig) /* SIGINT handler */
{

printf("So you think you can stop the bomb with ctrl-c, do you?\n");
sleep(2);
printf("Well...");
exit(0);

}

int main()
{

/* Install the SIGINT handler */
if (signal(SIGINT, sigint_handler) == SIG_ERR)

unix_error("signal error");
/* Wait for the receipt of a signal */
pause();
return 0;

}
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q Kill -9 1000: Send SIGKILL to process 1000
q Kill -9 -1000: Send SIGKILL to every process in process group 1000
q Ctrl-C: SIGINT

q Ctrl-Z: SIGTSTP 
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q One process belongs to one process group
§ getpgrp(), get process group of current process
§ setpgid(): change process group

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground 
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

Fore-
ground
job
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Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Signal delivered
to process A

Signal received
to process A


