
1

Instructor : Huaicheng Li

Sept 3 2024



2

q Congrats on ex0 submission!
q ex1 is up, due on September 17, 2024 11:59 PM



3

q Processes manages many resources ...
§ And one key aspect is the file descriptors they own

q Let’s learn how file descriptors are managed by the OS
§ Why do we need it?
§ How does it work?
§ How do we use it?
§ Cute demos!



4

Linux/Unix: everything is a file ...



5

q A file descriptor is a handle that allows user processes to refer to files, 
which are sequences of bytes

q Unix represents many different kernel abstractions as files to abstract I/O 
devices, e.g., disks, terminals, network sockets, IPC channels (pipes), etc.

q Provide a uniform API, no matter the kind of the underlying object
§ read(2), write(2), close(2), lseek(2), dup2(), and more
§ May maintain a read/write position if seekable
§ But note: not all operations work on all kinds of file descriptors



6

q Are represented using integers obtained from syscalls such as open()
q Are considered low-level I/O
q Are inherited/cloned by a child process upon fork()

q Are retained when a proces exec()’s another program
q Are closes when a process exit()s or is killed



7

q By convention, stdin (0), stdout (1), stderr (2)
q Programs do not have to open any files; they are preconnected; thus

programs can use them without needing any additional information
q Control programs (shell), or the program starting a program can set those 

up to refer to some regular file, terminal device, or something else
q When used, they access they underlying kernel object in the same way as if

they’d open it themselves
q Programs should, in general, avoid changing their behavior depending on 

the specific type of object their standard streams are connected
§ Exceptions exist, e.g., flushing strategy of C’s stdio depends on whether standard 

output is a terminal or not
§ Python 2 sys.stdout.encoding fiasco



8

q To properly understand file descriptors, must understand their 
implementation inside the kernel

q File descriptors use 2 layers of indirection, both of which involve reference
counting
§ (integer) file descriptors in a per-process table point to entries in a global open file 

table
§ per-process file descriptor table has a limit on the number of entries
§ each open file table entry maintains a read/write offset (or position) for the file
§ entries in the open file table point to entries in a global “vnode” table, which

contains specialized entries for each file-like object

q File descriptor tables are (generally) per-process, but processes can 
duplicate and rearrange entries



9

Open File Table

vnode Table

/dev/pty/7; refcnt = 1

/tmp/file1; refcnt = 2

/tmp/file2; refcnt = 1

Network; refcnt = 1

r/w pos = ? 
refcnt = 4 

r/w pos = 200 
refcnt = 1 

r/w pos = 250 
refcnt = 1 

r/w pos = 500 
refcnt = 3

r/w pos = ? 
refcnt = 1 

r/w pos = ? 
refcnt = 1 

Pipe (Rd) refcnt = 1

r/w pos = ?
refcnt = 1

Pipe (Wr); refcnt = 1

0

1

2

3

4

5

0

1

2

3

4

5

P
ro

ce
ss

 1
P

ro
ce

ss
 2



10

q dup(int fd): create a new file descriptor referring to the same file descriptor as
fd, increment refcount

q dup2(int fromfd, int tofd): if tofd is open, close it. Then, assign tofd to
the same open file entry as fromfd, increment refcount

q close(fd):
§ clear entry in file descriptor table, decrement refcount in open file table
§ if zero, deallocate entry in open file table and decrement refcount in vnode table
§ if zero, deallocate entry in vnode table and close underlying object
§ for certain objects (pipes, socket), closing the underlying object has important side effects that occur 

only if all file descriptors referring to it have been closed

q lseek(fd, offset, …)

q opendir(), closedir(), readdir(), …

q On fork(), the child inherits a copy of the parent’s file descriptor table (and the
reference count of each open file table entries is incremented)

q On exit() (or abnormal termination), all entries are closed



11

q Writers:
§ can store data in the pipe as long as there is space
§ blocks if pipe is full until reader drains pipe

q Readers:
§ drains pipe by reading from it
§ if empty, blocks until writer writes data

q Pipes provide a classic “bounded buffer” abstraction that
§ is safe: no race conditions, no shared memory, handled by kernel
§ provides flow control that automatically controls relative progress: e.g., if writer is

BLOCKED, but reader is READY, it’ll be scheduled. And vice versa.
§ Created unnamed; file descriptor table entry provide for automatic cleanup

write read
data



12

q File path
§ Absolute path (e.g., /usr/bin/ls)
§ Relative path (e.g., ./a.out)

q File types
§ Regular
§ Block / character
§ Socket
§ Directory
§ Links
§ …

q File/Storage Stack

User Program

File System

Device Driver

SSDs/Disks



13

User Level

System Calls

File Descriptors

File System

Kernel

SSDs

ext4

read() write() close()



14

File Descriptor

 ssize_t ret = write(int fd, void *buf, size_t nbyte);

 ssize_t ret = read(int fd, void *buf, size_t nbyte);

 ssize_t ret = close(int fd);

 int fd = open(const char *path, int oflag, …);



15

q Two opens of the same file yield independent sessions

fd1

fd2
File

descriptors
Open file
objects File

offset1

offset2
“/foo/bar”

q Two opens of the same file yield independent sessions

fd1

fd2
offset2 “/foo/bar”



16

Open File Structures

fds[0]
fds[1]
fds[2]
fds[n]

f_flag
f_count=2
f_offset
f_vnode

f_flag
f_count=2
f_offset
f_vnode

f_flag
f_count=1
f_offset
f_vnode

. . .

Process B
“sharing” file structure but have 
different file descriptors

fds[0]
fds[1]
fds[2]
...
fds[n]

Process A



17


