CS 3214 Computer Systems
Lecture >: File Descriptors and Pipes

Instructor: Huaicheng Li

Sept 3 2024

7

VIRGINIA TECH.

Administrivia
a Congrats on ex0 submission!

Q ex| is up, due on September 17,2024 11:59 PM

Recap & Today’s Topics

Q Processes Manages many resources ...

* And one key aspect is the file descriptors they own

Q Let's learn how file descriptors are managed by the OS
= Why do we need it

= How does it work?
= How do we use it!
= Cute demos!

Linux/Unix: everything is a file ...

Unix File Descriptors

Q A file descriptor is a handle that allows user processes to refer to files,
which are sequences of bytes

0O Unix represents many different kernel abstractions as files to abstract I/O
devices, e.g, disks, terminals, network sockets, IPC channels (pipes), etc.

Q Provide a uniform API, no matter the kind of the underlying object
" read(2), write(2), close(2), Iseek(2), dup2(), and more
* May maintain a read/write position if seekable
= But note: not all operations work on all kinds of file descriptors

Various Aspects of File Descriptors

0 Are represented using integers obtained from syscalls such as open()

Q Are considered low-level 1/O
Q Are inherited/cloned by a child process upon fork()

Q Are retained when a proces exec()'s another program

Q Are closes when a process exit()s or is killed

Standard Streams

Q By convention, stdin (0), stdout (1), stderr (2)

QO Programs do not have to open any files; they are preconnected; thus
programs can use them without needing any additional information

Q Control programs (shell), or the program starting a program can set those
up to refer to some regular file, terminal device, or something else

0 When used, they access they underlying kernel object in the same way as if
they'd open it themselves

QO Programs should, in general, avoid changing their behavior depending on
the specific type of object their standard streams are connected

= Exceptions exist, e.g., flushing strategy of C's stdio depends on whether standard
output is a terminal or not

» Python 2 sys.stdout.encoding fiasco

File Descriptors — The Subtle Parts

0 To properly understand file descriptors, must understand their
implementation inside the kernel

Q File descriptors use 2 layers of indirection, both of which involve reference
counting

" (integer) file descriptors in a per-process table point to entries in a global open file
table

= per-process file descriptor table has a limit on the number of entries

" each open file table entry maintains a read/write offset (or position) for the file

= entries in the open file table point to entries in a global “vnode” table, which
contains specialized entries for each file-like object

Q File descriptor tables are (generally) per-process, but processes can
duplicate and rearrange entries

Open File Table

vnhode Table

| Network; refcnt = 1

A N
o N [sp} o N (32}
| SS800.d Z Sseo0id

File Descriptor Manipulation

Q dup(int fd): create a new file descriptor referring to the same file descriptor as
fd, increment refcount

Q dup2(int fromfd, int tofd): if tofd is open, close it. Then, assign tofd to
the same open file entry as fromfd, increment refcount

Q close(fd):

= clear entry in file descriptor table, decrement refcount in open file table

= if zero, deallocate entry in open file table and decrement refcount in vnode table

= if zero, deallocate entry in vnode table and close underlying object

= for certain objects (pipes, socket), closing the underlying object has important side effects that occur
only if all file descriptors referring to it have been closed

Q Iseek(fd, offset, ...)
Q opendir(), closedir(), readdir(), ...

A On fork(), the child inherits a copy of the parent’s file descriptor table (and the
reference count of each open file table entries is incremented)

O On exit() (or abnormal termination), all entries are closed

10

——) data ——

Pipes write O read

Q Writers:
" can store data in the pipe as long as there Is space
" blocks if pipe is full until reader drains pipe

0 Readers:
" drains pipe by reading from it
= if empty, blocks until writer writes data

Q Pipes provide a classic “bounded buffer” abstraction that
= s safe: no race conditions, no shared memory, handled by kernel

= provides flow control that automatically controls relative progress: e.g., if writer is
BLOCKED, but reader is READY, it'll be scheduled. And vice versa.

» Created unnamed; file descriptor table entry provide for automatic cleanup

11

More for Reference

Q File path
= Absolute path (e.g., /usr/bin/Is)
= Relative path (e.g, ./a.out)

Q File types
= Regular
= Block / character
= Socket
" Directory
= Links

Q File/Storage Stack

User Program

12

The Storage Stack

User Level

Kernel

read() write() close()

System Calls

File Descriptors

File System

13

int f{d = open(const char *path, int oflag, ...);

File Descriptor

ssize_t ret = write(int fd, void *buf, size_t nbyte);

ssize_t ret = read(int {d, void *buf, size_t nbyte);

ssize_t ret = close(int fd);

14

Accessing Open Files

0O Two opens of the same file yield independent sessions

fd| —— offset| —
“/foo/bar”
fd2 b—— offset? /
File Open file o
descriptors objects e

0O Two opens of the same file yield independent sessions

fd |

fd2

> offset? —— “/foo/bar”

15

Some associated structures in kernel space

Process A

Process B

fds[Q] ——
fds[1]
fds[2]
fds[n]

Open File Structures

f_flag f_flag f_flag

f count=I1 f_count=2 f count=2

f offset f offset " offset

f vnode f vnode f vnode
|t I

fds[0]

fds[1]

fds[2]

%cljs[n]

“sharing” file structure but have
different file descriptors

16

Linux FDs

Process A Open file table I-node table
File descriptor table (system-wide) (system-wide)

fd | file file | status | inode file | file
flags | ptr offset | flags ptr type | locks

fd 0 B

Ja1 & 224

/|

fd2 \

1120 > 1976

Process B
File descriptor table

fd | file 73
flags | ptr

fd 0

fd1 86 ! 5139

NN

fd 2
fd 3 %

