
1

Instructor : Huaicheng Li

Sept 3 2024

2

q Program à Process (an instance of running program)
q Context switch vs. dual-mode (userßàkernel) operations

timer
interrupt

Time

Process 1

Process 2

Kernel

user mode

kernel mode

read I/O

I/O interrupt:
read is done

timer
interrupt

3

Operating System

“System Software”

User Process 1

User Program 2User Process 2

User Process n

...

Process 1 Process 2OS I/O
Device

k: read()

k+1:

startIO()

endio{ interrupt

main{

main{

}

read{

}

}

schedule()

Memory

save
state schedule()

restore
state

save
state

4

q Process state management
q Process scheduling (not in-depth)
q Process user interface

5

q Running: executing its instructions on CPUs
q Ready: ready to execute but waiting for its turn
q Blocked: stopped due to external events, cannot make use of CPUs even if some

are available
q Running à Blocked

§ waiting for : input, exclusion access to a lock, signal, sleep(2s), child process
q Blocked à Ready

§ The waiting is now over!
§ OS adds the process to a ready queue

q Ready à Running (CPU scheduling)
§ 1 process per CPU, scheduling policy

q Running à Ready
§ Process de-scheduled (yield or preempted)

6

1. What happens if an n CPU system has exactly n READY processes?
2. What happens if an n CPU system has 0 READY processes?
3. What happens if an n CPU system has k < n READY processes?
4. What happens if an n CPU system has 2n READY processes?
5. What happens if an n CPU system has m >> n READY processes?
6. What is a typical number of BLOCKED/READY/RUNNING processes in a

system (e.g., your phone or laptop?)
7. How does the code you write influence the proportion of time your program

spends in the READY/RUNNING state?
8. How can the number of processes in the READY/RUNNING state be used to

measure CPU demand?
9. Assuming the same functionality is achieved, is it better to write code that

causes a process to spend most of its time BLOCKED, or READY?

7

q Prefer BLOCKED to READY because it does not consume CPU; use OS
facilities to wait for events rather than poll in a loop

q 150 − 500 BLOCKED, and 0 − 2 RUNNING
q Every process takes about twice as long as it normally would
q The load average is a weighted moving average of the size of the ready queue

(including RUNNING processes); it says how many CPUs could be kept busy
q System becomes very laggy, processes take much longer than normal
q n − k CPUs are idle, k CPUs run exactly 1 process
q Each CPU runs exactly 1 process
q Performing computation without performing I/O means the process is READY

at all times and will be RUNNING if scheduled.
q The system is idle and goes into a low-power mode

8

q Our model is simplified, real OS often maintain state diagrams with 5-15
states for their threads/tasks
§ Linux uses the following states
§ Command line tool: “ps”

D uninterruptible sleep (usually IO)
I Idle kernel thread
R running or runnable (on run queue)
S interruptible sleep (waiting for an event to complete)
T stopped by job control signal
t stopped by debugger during the tracing
X dead (should never be seen)
Z defunct ("zombie") process, terminated but not reaped by its parent

9

q Job control: stop/suspend, and resume a process
§ Linux commands: jobs, bg, fg,

- Ctrl-Z: pause process in time until users tell it to continue

q Job control and process states
§ Don’t be confused

10

q Process state transitions are guided by decisions or events outside the
programmer’s control (user actions, user input, I/O events, inter-process
communication, synchronization) and/or decisions made by the OS (scheduling
decisions)

q They may occur frequently, and over small time scales
§ e.g., on Linux preemption may occur every 4ms for RUNNING processes
§ when processes interact on shared resources (locks, pipes) they may frequently

block/unblock)

q For all practical purposes, these transitions, and the resulting execution order,
are unpredictable

q The resulting concurrency requires that programmers not make any assumptions
about the order in which processes execute; rather, they must use signaling and
synchronization facilities to coordinate any process interactions

11

q Problem of choosing which process to run next
§ And for how long until the next process runs

q Why bother?
§ Improve performance: amortize context switching costs (fast switching)
§ Improve user experience: e.g., low latency keystrokes (timely)
§ Priorities: favor “important” work over background work (priorities)
§ Fairness

q Linux schedulers (for fun, read more by yourself)
§ CFS (completely fair scheduler)
§ EEVDF (since Linux 6.6, read here, based on a paper in 1995, here)

- earliest eligible vir tual deadline first scheduling

https://lwn.net/Articles/969062/
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=805acf7726282721504c8f00575d91ebfd750564

12

q When a process blocks
q When a device interrupts the CPU to indicate an event occurred (possibly

un-blocking a process)

q When a process yields the CPU

q Preemptive scheduling: Setting a timer to interrupt the CPU after some
time
§ Places an upper bound on how long a CPU-bound process can run without giving

another process a turn

q Non-preemptive scheduling: Processes must explicitly yield the CPU

13

q OS uses process control blocks (PCBs) to represent a process
q Every resource is represented with a queue
q OS puts PCB on an appropriate queue

§ Ready-to-run queue
§ Blocked for IO queue (queue per device)
§ Zombie queue

q When CPU becomes available, choose from ready to run queue

q When an event occurs, remove waiting process from blocked queue, move
to ready queue

14

q e.g., Chrome browser
q Single process cannot overleap CPU and I/O

15

q OS provide APIs (system calls) to manage process
q Process creation

§ includes ways to set up new process’s environment

q Process termination
§ Normal termination (exit(), return from main())
§ Abnormal termination (due to crash or outside intervention, “kill”)
§ In either cases, OS cleans up (reclaims all memory, close file-descriptors)

q Process interaction; examples include
§ Waiting for a process to finish (wait())
§ Stopping/continuing a process

q Change a process’s scheduling and other attributes
q OS provides facilities to be used by or in coordination with control programs

(shell, GUI, task manager): Ctrl-C, Ctrl-Z

16

q Unix fork()/exec()
§ Child inherits everything, runs same program
§ Only difference is the return value from fork()

- Child gets 0; parent gets child pid

q A separate exec() system call loads a new program
§ Like getting a brain transplant

q Some programs, like our web server example, fork() clones (without calling
exec()).
§ Common case is probably fork+exec

17

18

q Unix separate process creation from loading a new program
q The fork() system call creates a new process, but does not load a new program
q The newly created process is called a child process (creating process is parent)

§ Processes form a tree-like hierarchy
§ Child processes may inherit parts of their environment from their parents, but are

otherwise distinct entities

q The child process then may change/set up the environment and, when ready, load a
new program that replaces the current program but retains certain aspects of the
environment (exec())

q The parent has the option of waiting for the child process to terminate, which is
also called “joining” the child process
§ Parent can also learn how the child process terminated, e.g., the code that the child

passed to exit()

19

q The exec() call allows a process to “load” a different program and start
execution at main (actually _start).

q It allows a process to specify the number of arguments (argc) and the
string argument array (argv).

q If the call is successful
§ it is the same process …
§ but it runs a different program !!

q Code, stack & heap is overwritten
§ Sometimes memory mapped files are preserved.

20

q exec()
§ Keeps process, but discards old program and loads a new program
§ Reinitializes process state (clears heap + stack, starts at new programs’s main());

except it retains file descriptors
§ If successful, is called once but does not return
§ includes multiple variants (execvp(), etc)

q fork()
§ Keeps program and process, but also creates a new process
§ New process is a clone of the parent; child state is a (now separate) copy of

parent’s state, including everything: heap, stack, file descriptors
§ Called once, returns twice (once in parent, once in child)

21

22

In the parent process:

main()
…

int r =fork(); // create a child
if (0 == r) { // child continues here

exec_status = exec(“calc”, argc, argv0, argv1, …);

printf(“Something is horribly wrong\n”);
exit(exec_status);

} else { // parent continues here
printf(“Shall I be mother?”);

…
child_status = wait(r);

}

