
1

Instructor : Huaicheng Li

Aug 29 2024



2

q Syllabus quiz released, deadline: 9/9 11:59pm
q Exercise 0 released, deadline: 9/6 11:59pm
q Lectures (Please bookmark them)

§ https://courses.cs.vt.edu/cs3214/fall2024/lecturesli/
§ Take a look at Dr. Back’s lectures as well

q TA office hours posted
§ Google Calendar (Course website à MORE INFO à Staff)
§ Follow the queueing rules on Discord

https://courses.cs.vt.edu/cs3214/fall2024/lecturesli/
https://calendar.google.com/calendar/r?cid=dnQuZWR1XzVva3NrOGlxdm5oZjRsNnJkamZiOXNxcmVjQGdyb3VwLmNhbGVuZGFyLmdvb2dsZS5jb20


3

q Systems Architecture: Applications / OS / Hardware
q Dual mode operation: Applications <-> OS (protection, isolation, performance)

§ System calls as OS APIs for applications to use
§ Dual mode operations: User/kernel mode, CPU privilege levels (Ring 3/0)

q Processes
§ Virtual resources including CPU share, address space, file descriptors, etc.

q Time-sharing: N applications on 1 CPU è 1/nth CPU for each application



4

q A process is a program during execution.
§ Program = static file (image)
§ Process = executing program = program + execution state.

q A process is the basic unit of execution in an operating system
§ Each process has a number, its process identifier (pid).

q Different processes may run different instances of the same program

q At a minimum, process execution requires following resources:
§ Memory to contain the program code and data
§ A set of CPU registers to support execution



5

q We write a program in e.g. C 
q A compiler turns that program into an instruction list. 
q The CPU interprets the instruction list (which is more a graph of basic 

blocks). 
void X (int b) {

if (b == 1) {

…

int main() {

int a = 2;

X(a);

}



6

void X (int b) {

if(b == 1) {

…

int main() {

int a = 2;
X(a);

}

What you wrote:

void X (int b) {

if(b == 1) {

…

int main() {

int a = 2;
X(a);

} Code

main; a = 2
X; b = 2

Heap

Stack

What is in memory:

Data



7

q When I type “./a.out”, the binary runs, right?
§ Only true for static binaries (more later)

q In reality a loader sets up the program
§ Usually a user-level program



8

q To run a program, the loader :
§ reads and interprets the executable file
§ sets up the process’s memory to contain the code & data from executable
§ pushes “argc” and “argv” on the stack

- for the main() function
§ sets the CPU registers properly & calls “_start()”

q Program starts running at _start()
q When main() returns, OS calls exit() which destroys the process and

returns all resources
q What bookkeeping does the OS need for processes?



9

q A process has code
§ OS must track program counter (code location)

q A process has a stack
§ OS must track stack pointer

q OS stores state of processes’ computation in a process control block (PCB)
§ E.g., each process has an identifier (process identifier, or PID)

q Data (program instructions, stack & heap) resides in memory, metadata is
in PCB (which is a kernel data structure in memory)



10

q The OS periodically switches execution from one process to another
q Called a context switch, because the OS saves one execution context and 

loads another

q Causes?



11

q Waiting for I/O (disk, network, etc.)
§ Might as well use the CPU for something useful

q Timer interrupt (preemptive multitasking)
§ Even if a process is busy, we need to be fair to other programs

q Voluntary yielding (cooperative multitasking)
q Synchronization, IPC, etc.



12

q User à Kernel mode
§ Explicit: 

- Call system calls to enter kernel mode
- Fault/exceptions (e.g, division by zero, attempt to execute privileged instructions
- Synchronous

§ Implicit: (external events, e.g., hardware interrupts or preemption)
- Preemption: higher priority kernel-level process needs to run
- Interrupts: What is it?
- What types of interrupts? Timer, keyboard, mouse, disk, network, etc.
- Asynchronous

q Kernel à User mode
§ Via special privileged instruction (e.g., Intel iret)
§ A return from interrupt



13

q 1. NIC receives packet, writes packet into memory
q 2. NIC signals a hardware interrupt
q 3. CPU stops current operation, switches to the kernel mode, saves 

machine state on the kernel stack
q 4. CPU reads address from interrupt table indexed by interrupt number, 

jumps to the address of the interrupt handle (in the NIC driver)
q 5. NIC device driver processes the packet
q 6. Upon completion, CPU restores saved state from stack and returns to 

user mode
q Are there any other ways to perform I/O?



14

The timer is critical for an operating system
q It is the fallback mechanism by which the OS reclaims control over the 

machine
§ Timer is set to generate an interrupt after a period of time
§ Setting timer is a privileged instruction
§ When timer expires, generates a hardware interrupt
§ Handled by kernel, which controls what runs next
§ Basis for OS scheduler (process scheduling)

q Prevents infinite loops
§ OS can always regain control from erroneous or malicious

q programs that try to hog CPU
q Also used for time-based functions (e.g., sleep)



15

q Interrupts halt the execution of a process and transfer control (execution) 
to the operating system
§ Can the interrupt handler itself be interrupted? 
§ Can we and shall we disable interrupts?

q Interrupts are used by devices to have the OS do stuff
§ What is an alternative approach to using interrupts?
§ What are the drawbacks of that approach?



16

q The transition from user space to kernel space can happen without any 
hardware assistance/involvement

q malloc() is a system call

q Every keyboard stroke cause an interrupt



17

q Mode switch guarantees that kernel gains control when needed
§ To react to external events
§ To handle error situations
§ Entry into kernel is controlled

q Not all mode switches lead to context switches
§ context switches are between two processes

q Kernel decides if/when – subject to process state transitions and scheduling 
policies

q Mode switch does not change the identity of current process/thread



18



19

q Check Linux PCB code: struct task_struct { … }
§ https://elixir.bootlin.com/linux/v5.19.3/source/include/linux/sched.h#L726
§ struct mm_struct *mm;
§ struct files_struct *files;
§ struct sched_info sched_info;

https://elixir.bootlin.com/linux/v5.19.3/source/include/linux/sched.h


20

q Process definition: An instance of a program that is being executed (aka, a 
running programming)

q Abstractions provided to a process
§ Virtual CPU: illusion of many CPUs
§ Address space – machine state
§ Files, etc.

q Time-sharing to enable multi-programming

q Context switches
§ Context: the state of the running program, which includes the

current program text, the location within the program text (PC/IP), and all
associated state: variables (global, heap, stack, CPU registers)

§ Switches – Dual Mode operations


