
Managing Shared State

Godmar Back

Virginia Tech

October 8, 2024

Godmar Back Managing Shared State 1/14 1 / 14

Introduction

Because multi-threaded programs
share a virtual address space, they can
directly access all objects allocated in
the address space: global variables,
heap objects, etc.

The non-determinism introduced by a
preemptive scheduling regime and/or
the simultaneous execution on
multiple processors or cores makes
such sharing challenging

Motivating example: counter++

Figure 1: Typical Shared Memory Multicore
Architecture, Sorin 2011 [2]

Godmar Back Managing Shared State 2/14 2 / 14

Data Races

Definition
Two or more threads access a shared variable, at least one access is a write access,
and final result depends on the order of the execution of those threads, and
specifically the order of their memory accesses

Such data races are one form of concurrency-related bugs (aka “race conditions”)

Can be intermittent and difficult to find (“Heisenbugs”)

Others include: ordering violations, atomicity violations

Will discuss the following strategies:
Avoidance by duplication & partitioning
Use of mutual exclusion devices, e.g., locks
Use of atomic instructions

Godmar Back Managing Shared State 3/14 3 / 14

Avoiding Sharing

Data races cannot occur during those parts of a computation where no data is
shared

Strategies to reformulate the problem include:
Partitioning: separate data into disjoint parts operated on separately by multiple threads

Duplicating: provide separate copies of a data structure that threads can independently
modify

Many scalability breakthroughs were obtained from redesigning data structures
to avoid or reduce sharing, e.g.

Per-thread counters
Per-CPU ready queues
Region-based memory allocators

However, these strategies can incur a cost in terms of management complexity
and require additional space

Godmar Back Managing Shared State 4/14 4 / 14

Ad-hoc Strategies

There are, unfortunately, many myths about what is safe and what isn’t when it
comes to writing data race free programs.

Myth 1: “I’m just reading, not updating”

Myth 2: “By cleverly arranging the order of read/write accesses I can avoid a
data race”

Myth 3: “I can avoid races with volatile”

Figure 2: Is there a data race on x? Source: [1]

Godmar Back Managing Shared State 5/14 5 / 14

Ad-hoc Strategies Fail

waitingonaflag.c
#include <stdio.h>

#include <stdlib.h>

#include <stdbool.h>

bool done;

int x;

void thread1() {

x = rand() % 2;

done = true;

}

int thread2() {

while (!done) { }

return x;

}

compiler reorders statements

compiler replaces loops with ifs

compiled with gcc 7.5
thread1:

subq $8, %rsp

call rand@PLT

movl %eax, %edx

movb $1, done(%rip) # done = true

shrl $31, %edx

addl %edx, %eax

andl $1, %eax

subl %edx, %eax

movl %eax, x(%rip) # x = ...

addq $8, %rsp

ret

thread2:

cmpb $0, done(%rip)

jne .L8 # if !done goto L8

.L7: # else: loop forever

jmp .L7

.L8:

movl x(%rip), %eax

ret

Godmar Back Managing Shared State 6/14 6 / 14

Sequential Consistency

Consider each thread’s program a series of “steps”

A sequentially consistent execution is the result of some interleaving of these
steps (without changing the order within each thread, and immediately
propagating updates to other threads)

By default, programming languages do not guarantee such an execution because
Compiler may reorder statements that do not logically depend on each other
Processors may reorder load/store instructions likewise

See Adve & Boehm [1] for precise definition and discussion

Rule
Modern languages such as C, C++, Java guarantee sequentially
consistent execution only for programs that are data race free.
Achieving freedom from data races requires synchronization, specifically
the proper use of critical sections (aka mutual exclusion, locks)

Godmar Back Managing Shared State 7/14 7 / 14

Mutual Exclusion

Traditionally known as the “critical section” problem

Idea:
Threads update shared data only after entering a critical section
Only 1 thread can be inside a critical section at a time
Thread enter critical sections only when accessing shared data

Thus, all operations (reads and writes) performed within a
critical section appear as one atomic (isolated) unit

Provided by mutexes, commonly called “locks”
An entry operation “acquires,” or locks the lock
The thread is then said to “hold” the lock
An exit operation “releases,” or unlocks the lock

Figure 3: Only 1 thread
may acquire a lock at a
time

Godmar Back Managing Shared State 8/14 8 / 14

Understanding Locks

Locks do not protect code. They protect data.

Each piece of shared data needs to have a lock that protects it:
struct list task_queue; // protected by task_queue_lock

pthread_mutex_t task_queue_lock; // protects task_queue

Locks do not protect data automatically – rather, they enable a cooperative
protocol between threads to avoid data races on data they share

No matter where in the code the data is accessed that associated lock
must be held

Different pieces of data may be protected by the same lock1

Ignoring these rules accounts for most intermittent failures that involve
data corruption in our student projects

1In fact, break up locks only when necessary

Godmar Back Managing Shared State 9/14 9 / 14

Understanding Locks: Dont’s

Do not use different locks in different sections of your code when accessing the
same data

Do not try to acquire a lock you already hold2

Do not forget to unlock a lock on some path
Best practice is to ensure the invariant at the function level: either a lock is not held upon
entry and not held upon exit; or it is assumed to be held upon entry and stays locked upon
exit.

Do not hold a lock while blocking for some event (sleeping, I/O, ...)
This would make threads that need the same lock wait for the same event

2unless recursive mutexes are used

Godmar Back Managing Shared State 10/14 10 / 14

Understanding Locks: Do’s

Use race condition detection tools, e.g. Helgrind, DRD, Intel Thread Checker,
TSan

Thread 1

Thread 2

Access a1(x)

Access a2(x)

Access a3(x)Unlock1(m1)Lock1(m1)

Unlock2(m1)Lock2(m1)

Unlock3(m1)Lock3(m1)

Figure 4: When using proper locking discipline, a pairwise “happens-before” relationship is
established between all pairs of accesses to variable x ; e.g.: a1(x) → U1(m1) because it’s done by
the same thread (ditto for L2(m1) → a2(x) → U2(m1) and L3(m1) → a3(x)). The relationships
U1(m1) → L2(m2) and U2(m1) → L3(m1) hold because unlocking a mutex happens before the next
successful lock operation. ak(x) || aj(x) iff neither ak(x) → aj(x) nor aj(x) → ak(x).

Godmar Back Managing Shared State 11/14 11 / 14

http://valgrind.org/docs/manual/hg-manual.html
http://valgrind.org/docs/manual/drd-manual.html
https://software.intel.com/en-us/articles/intel-thread-checker-documentation
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

Thread-Safety

Definition
Property of a function to yield correct result when called from multiple threads

Attribute that must be documented as part of the API documentation of a
library

Some traditional C functions are not thread-safe (strtok)

Functions are not thread-safe if they
1 Fail to protect shared variables
2 Rely on persistent state across invocations
3 Return a pointer to a static variable
4 Call other functions that aren’t thread safe

Godmar Back Managing Shared State 12/14 12 / 14

Relying on persistent state across invocations

Not only does this function fail to protect
shared state (next), it also does not maintain
deterministic order in which pseudo-random
numbers are being generated.

Fix: pass state to function, e.g. rand r()

With the introduction of support for
multithreading, the C library was updated with
several r() functions that are thread-safe

The ‘r’ stands for reentrant, which is a
stronger property than being thread-safe.
Reentrant functions can be safely reentered
while a call is in progress - as, for example, in
the case of recursive functions.

Example: rand()
static unsigned int next = 1;

/* rand -return pseudo-random integer

in 0..32767 */

int rand(void) {

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

}

/* srand-set seed for rand() */

void srand(unsigned intseed) {

next = seed;

}

Fix: rand r()
int rand_r(unsigned int *seedp);

Godmar Back Managing Shared State 13/14 13 / 14

References

[1] Hans-J. Boehm and Sarita V. Adve.
You don’t know jack about shared variables or memory models.
Commun. ACM, 55(2):48–54, February 2012.

[2] Daniel J. Sorin, Mark D. Hill, and David A. Wood.
A Primer on Memory Consistency and Cache Coherence.
Morgan & Claypool Publishers, 1st edition, 2011.

Godmar Back Managing Shared State 14/14 14 / 14

