
1

Instructor : Huaicheng Li

October 3 2024



2

q The need to pursue multiple, concurrent computations simultaneously within a 
process besides process-level concurrency …

q Parallelization: exploit multi-cores for fast parallel task executions
q Multiplexing of I/O and computation

§ CPU is fast, I/O is slow
§ Wasteful for CPUs to wait for I/Os

q Foreground and background activities
§ E.g., VSCode: handle your inputs in the foreground, downloading updates in the 

background
§ Many other GUI applications

q Handle multiple clients
§ E.g., network server 



3

q Multiple threads of execution within one process

q Each thread has separate logical flows of control

q Each thread is part of the hosting process, but with some of its own private 
context
§ Share code, data, kernel context
§ Thread’s individual stack for local variables (not protected from other threads)
§ Each thread has its own thread id (TID)

§ Think of threads as multiple programs executing concurrently within a shared 
process, sharing all data and resources, but maintaining separate stacks and 
execution state.



4

q Process = process context + code, data, and stack

Shared libraries

Run-time heap
Read/write data

Program context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Read-only code/dataKernel context:
VM structures
Descriptor table
brk pointer

Stack

VM: virtual memory



5

Shared libraries

Run-time heap
Read/write data

Thread context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Read-only code/data

Kernel context:
VM structures
Descriptor table
brk pointer

Stack

Thread (main thread) Code, data, and kernel context



6

Shared libraries

Run-time heap
Read/write dataThread context:

Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Read-only code/data

Kernel context:
VM structures
Descriptor table
brk pointer

Stack-1

Thread (main thread)
Code, data, and kernel context

Thread context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Stack-2

Peer Thread



7

q Threads are peers to each other
q Processes are organized in hierarchies (parent/child)

P0

P1

sh sh sh

foo

T1

T2
T4

T5 T3

shared code, data
and kernel context

Threads Processes



8

q Two threads are concurrent if their flows overlap in time
q Otherwise, sequential



9

q Similarities
§ Each has its own logical control flow
§ Each can run concurrently with others (e.g., on different cores)
§ Each is context switched

q Differences
§ Threads share all code and data (except local stacks)

- Processes (typically) do not
§ Threads are more lightweight than processes

- Process control (creation/destroy) 2x as expensive as thread control
- E.g., on Linux

• ~20K cycles to create and release a process
• ~10K cycles (or less) to create and reap a thread

- ...



10

q Standard interface for thread management, ~60 functions
§ De facto standard for Unix-like OS, specified in IEEE Std.1003.10-2017

q Creation and reaping threads
§ pthread_create()
§ pthread_join()

q Get thread ID
§ pthread_self()

q Terminating threads
§ pthread_cancel()
§ pthread_exit()

q Synchronization primitives on shared variables



11

void *thread(void *arg);

int main()
{

pthread_t tid;
pthread_create(&tid, NULL, thread, NULL);
pthread_join(tid, NULL);

return 0;
}

void *thread(void *arg)
{

printf(“Hello, world!\n”);
return NULL;

}



12

q Does the ability to maintain multiple flows of control require support from the 
underlying OS kernel?

q Can it be implemented purely using libraries, etc. using non-privileged 
instructions and other facilities at user-level?



13

q It’s possible to maintain multiple control flows entirely without kernel level support

q Exists in multiple variants in different languages, known as coroutines or user-level 
threads depending on variant

q Requires a primitive that saves & restores execution state
q Non-preemptive model: threads’ access to the CPU is not preempted (taken away) 

unless the thread yields access to the CPU voluntarily
q Yield may be directed (saying which coroutine should run next) or undirected (run 

something else next), e.g. uthreads example
q In some higher-level languages, functions can “yield” temporary results as their

execution state is saved and restored (e.g., Python yield)
q Can be combined with asynchronous I/O: yield a promise object that represents an 

in-progress operation: async/await



14

q Pros
§ No OS support required
§ Very lightweight, fast context switch
§ Absence of certain data races, e.g. a++ atomic
§ Scalable when combined with async I/Os

q Cons
§ No multi-core parallelism
§ No explicit preemption (causing starvation)
§ Blocking I/O system calls will block the entire process



15

q Parallelism (yes!)
§ using multi-cores/cpus b/c now the OS does the scheduling
§ under I/O, the thread can be moved to BLOCKED state

q Scheduling threads like processes, process states
q Preemption (yes!)

§ allow shared accessed to a CPU, despite the willingness of multi-threads
- threads that don’t yield can still be preempted
- the OS can forcefully interrupt the thread and move them to STEADY state

q Kernel-supported threads are the dominant model to use today ...
§ Approaches to implement threads: user-level threads vs. kernel-supported threads
§ kernel threads are a different concept: tasks that run as part of the kernel/OS



16

LWP: lightweight processes



17

q Pure user-level threading uses a 1:N model (N user-level threads share 1 OS-level 
thread)

q Pure kernel-level threading uses a 1:1 model (1 OS thread for each user thread)

q Hybrids (M:N) models try to obtain the best of user-level and kernel-supported
threads.

q Examples: Windows Fibers, (now defunct) Solaris M:N model
Increase in complexity (and lack of payoff) led to the M:N model being largely
abandoned.

q Heavy investment/optimization in reducing the costs of the 1:1 model, e.g. fast
user-level synchronization facilities



18

q Too easy to share resources (?)
§ Not much control over scheduling
§ Difficult to debug (ordering unpredictable)



19

q Applications rarely create separate, new threads for individual tasks, particularly 
if small

q Instead, they manage the number of threads needed to perform work and
distribute work to threads

q Trade-off:
§ Too many threads: leads to increased contention for resources and resulting 

overhead from managing that
§ Too few threads: risks underutilization of CPUs/cores

q Target: number of READY + RUNNING threads around equal to number of
cores

q Solution: thread pools



20



21



22

q Semaphore
q Mutex
q Lock

q Conditional Variables


