CS 52 [4: Computer Systems
Lecture [2: Multi-threading

Instructor: Huaicheng Li

October 3 2024

7

VIRGINIA TECH.

Application-Level Concurrency

O The need to pursue multiple, concurrent computations simultaneously within a
process besides process-level concurrency ...

0 Parallelization: exploit multi-cores for fast parallel task executions

a Multiplexing of /O and computation
= CPU is fast, I/O is slow
= Wasteful for CPUs to wait for I/Os

0 Foreground and background activities

= F.g.,VS5Code: handle your inputs in the foreground, downloading updates in the
background

= Many other GUI applications

0O Handle multiple clients
= E.g,network server

A New Abstraction - Threads

Q Multiple threads of execution within one process
Q Each thread has separate logical flows of control

Q Each thread is part of the hosting process, but with some of its own private
context
= Share code, data, kernel context

= Thread's individual stack for local variables (not protected from other threads)
= Fach thread has its own thread id (TID)

* Think of threads as multiple programs executing concurrently within a shared
process, sharing all data and resources, but maintaining separate stacks and
eXeCutiOﬂ state. share do not share

machine resources, files on
Processes | disk, inherited file descriptors, | address space
terminals

address spacel, open file de-

scriptors

Threads

stack® & registers

Quick Recap: Process

0 Process = process context +

Program context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

Stack
Shared libraries

Run-time heap
Read/write data
Read-only code/data

VM: virtual memory

A Single-Threaded Process

Thread (main thread)

Stack

Thread context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Code, data, and kernel context

Shared libraries

Run-time heap
Read/write data
Read-only code/data

Kernel context:
VM structures
Descriptor table
brk pointer

A Multi-Threaded Process

Thread (main thread) Peer Thread
Stack- | Stack-2
Thread context: Thread context:
Data registers Data registers
Condition codes Condition codes
Stack pointer (SP) Stack pointer (SP)
Program counter (PC) Program counter (PC)

Code, data, and kernel context

Shared libraries

Run-time heap
Read/write data
Read-only code/data

Kernel context:
VM structures
Descriptor table
brk pointer

Logical View of Threads

QO Threads are peers to each other

0 Processes are organized in hierarchies (parent/child)

T2 F
A T4 l
T o
.. \ « P
“a shared code, data
and kernel context / 1 \
;" *‘3 sh sh sh
«
»
TS T3 1
foo

Threads Processes

Thread Scheduling/Concurrency

QO Two threads are concurrent if their flows overlap in time

a Otherwise, sequential

Threads vs Processes

Q Similarities
= Each has its own logical control flow
= Each can run concurrently with others (e.g., on different cores)
" Fach is context switched

a Differences

» Threads share all code and data (except local stacks)
- Processes (typically) do not
" Threads are more lightweight than processes
- Process control (creation/destroy) 2x as expensive as thread control
- E.g., on Linux
* ~20K cycles to create and release a process
* ~|0K cycles (or less) to create and reap a thread

POSIX Threads (Pthreads)

0 Standard interface for thread management, ~60 functions
» De facto standard for Unix-like OS, specified in IEEE Std.1003.10-2017

Q Creation and reaping threads
" pthread_create()

. pthread_jom() #include <pthread.h>
int
pthread_create (pthread_t *thread,
D Get thread ID const pthread_attr_t =xattr,
= pthread_self() Xzig :;;;*)c?rt_routlnm (voidx),

Q Terminating threads
" pthread_cancel()
" pthread_exit()

QO Synchronization primitives on shared variables

10

Thread Example & Execution

void *thread(void *arg);

int main()

{
pthread ttid;

pthread_create(&tid, NULL, thread, NULL);
pthread_join(tid, NULL);

return O;

J

void *thread(void *arg)

{
printf(“Hello, world'\n");
return NULL;

}

11

Beyond Pthreads

QO Does the ability to maintain multiple flows of control require support from the
underlying OS kernel?

QO Can it be implemented purely using libraries, etc. using non-privileged
instructions and other facilities at user-level?

12

Cooperative Multi-Threading (User-Level)

O It's possible to maintain multiple control flows entirely without kernel level support

O Exists in multiple variants in different languages, known as coroutines or user-level
threads depending on variant

O Requires a primitive that saves & restores execution state

O Non-preemptive model: threads’ access to the CPU is not preempted (taken away)
unless the thread yields access to the CPU voluntarily

O Yield may be directed (saying which coroutine should run next) or undirected (run
something else next), e.g. uthreads example

O In some higher-level languages, functions can “yield” temporary results as their
execution state is saved and restored (e.g., Python yield)

a Can be combined with asynchronous I/O: yield a promise object that represents an
in-progress operation: async/await

13

Cooperative Multi-Threading

Q Pros
= No OS support required
= Very lightweight, fast context switch
= Absence of certain data races, e.g. at++ atomic
" Scalable when combined with async I/Os

a Cons
= No multi-core parallelism
= No explicit preemption (causing starvation)
" Blocking I/O system calls will block the entire process

14

Kernel-supported Threads

Q Parallelism (yes!)
" using multi-cores/cpus b/c now the OS does the scheduling
= under I/O, the thread can be moved to BLOCKED state

A Scheduling threads like processes, process states

0O Preemption (yes!)

= allow shared accessed to a CPU, despite the willingness of multi-threads

- threads that don't yield can still be preempted
- the OS can forcefully interrupt the thread and move them to STEADY state

0 Kernel-supported threads are the dominant model to use today ...
= Approaches to implement threads: user-level threads vs. kernel-supported threads
= kernel threads are a different concept: tasks that run as part of the kernel/OS

15

Hybrid Models

16

;'r:?:"?al \ Proc 1 Proc 2 Proc 3 Proc 4 Procs
§ 8 we | TE S HC] (OS] (S A
&
| [s |
Space R e {4 41 L3 L 4
Kernel
o Threads \\// User
‘, " " Library Space
Kernel e S ' O
° Space Hardware
®
(b) Pure kernel-level ~{ = Theed O-uwe Q0 = Procesmor
Figure 1: 1:1 model Figure 2: 1:N model Figure 3: M:N model

LWP: lightweight processes

17

Hybrid Models (cont)

A Pure user-level threading uses a |:N model (N user-level threads share | OS-level
thread)

Q Pure kernel-level threading uses a |:| model (I OS thread for each user thread)

O Hybrids (M:N) models try to obtain the best of user-level and kernel-supported
threads.

O Examples:Windows Fibers, (now defunct) Solaris M:N model
Increase in complexity (and lack of payoff) led to the M:N model being largely
abandoned.

O Heavy investment/optimization in reducing the costs of the |:| model, e.g. fast
user-level synchronization facilities

Threads Downsides

0 Too easy to share resources (?)
= Not much control over scheduling
= Difficult to debug (ordering unpredictable)

18

19

Concurrency Management

QO Applications rarely create separate, new threads for individual tasks, particularly
if small

Q Instead, they manage the number of threads needed to perform work and
distribute work to threads

Q Trade-off:

" Too many threads: leads to increased contention for resources and resulting
overhead from managing that

= [oo few threads: risks underutilization of CPUs/cores

QO Target: number of READY + RUNNING threads around equal to number of
cores

Q Solution: thread pools

Pseudocode Source: Lea [1]

Result solve(Param problem) {
if (problem.size <= GRANULARITY_THRESHOLD) {
return directlySolve(problem) ;
} else {
in-parallel {
Result 1 = solve(lefthalf (problem)) ;
Result r = solve(rightHalf (problem) ;
}
return combine(l, r);
}
}

Challenge

An execution framework must map the tasks created in in-parallel to threads.

20

Concurrency under Threads

6
7
8
9

static volatile int counter = 0;

// mythread/()
//
// Simply adds 1 to counter repeatedly, in a loop
// No, this is not how you would add 10,000,000 to
// a counter, but it shows the problem nicely.
//
void smythread(void xarg) {
printf ("%$s: begin\n", (char =*) arg);

int i;
for (1 = 0; 1 < le7; i++) {
counter = counter + 1;

}
printf ("%$s: done\n", (char *) arqg);
return NULL;

}

// main ()

//

// Just launches two threads (pthread_create)

// and then waits for them (pthread_join)

//

int main(int argc, char xargv([]) {
pthread_t pl, p2;
printf("main: begin (counter = %d)\n", counter);
Pthread_create (&pl, NULL, mythread, "A");
Pthread_create (&p2, NULL, mythread, "B");

// join waits for the threads to finish

Pthread_join(pl, NULL);

Pthread_join(p2, NULL);

printf ("main: done with both (counter = %d)\n",
counter) ;

return 0;

21

Concurrency Primitives (Next Few Lectures)

QO Semaphore
0 Mutex
Q Lock

O Conditional Variables

22

