
Mini-Lecture on Character Sets and Unicode

Godmar Back

Virginia Tech

September 3, 2024

Godmar Back Character Sets and Unicode 1/19 1 / 19

Motivation

Character sets are easily one of the most confusing aspects of writing application
code and interacting with computer systems

Examples of where understanding of character sets is necessary include
Web servers/web applications (form processing, HTTP responses)
Processing files (copying, conversion, validation, display...)
Writing i18n code that is robust and correct

This minilecture is intended to give a understanding of what Unicode is about
and the consequences this entails for you as a programmer

It’s nowhere near to covering everything about Unicode or character sets

Godmar Back Character Sets and Unicode 2/19 2 / 19

Before we talk about character sets, let’s talk about bytes

A byte is a unit of digital information.
An octet is a byte consisting of 8 bits (“8-bit byte”), which allows us to
represent 256 possible values, in unsigned interpretation the integers from 0..255
(decimal) or 0x00..0xff (hex).

Historically, there were systems using smaller or larger bytes
In C, uint8 t is guaranteed to be 8 bits, but unsigned char is not in general (it’s
CHAR WIDTH bits).
POSIX says that CHAR WIDTH is 8 bits.

Upshot: there is wide consensus what is meant when talking about bytes/octet,
and streams of bytes: 48 65 6c 6c 6f 20 43 53 33 32 31 34

Bytes generally do not have an a priori interpretation other than the unsigned
value associated with the bit pattern

We typically ignore bit order (which bit is most/least significant) - this is a
lower-layer concern (serial protocol, memory controller)

Multibyte integers are subject to endianness e.g. do we interpret 01 02 as
1 · 256 + 2 = 258 or 2 · 256 + 1 = 513.

Godmar Back Character Sets and Unicode 3/19 3 / 19

Characters and Character Sets

Characters are abstract entities from some kind of alphabet

Consider this set of things (Source: freepik.com/flaticon.com)

{
, , , , ,

}
We may call these characters and associate names with them:

apple, tree, flower, pretzel, ball, house

Note: we haven’t used numbers yet

Godmar Back Character Sets and Unicode 4/19 4 / 19

https://www.freepik.com
https://flaticon.com

Character Encoding Example

To work with abstract characters, we must encode them somehow in a way
computers can understand them

Possible idea: assign consecutive numbers

= 0, = 1, = 2, = 3, = 4, = 5

uses the integers [0 . . . 5]. On a computer, this would require 3 bits. All
characters would take up 3 bits in this encoding. 6 and 7 would not be used.

This is not the only possible encoding.

Godmar Back Character Sets and Unicode 5/19 5 / 19

Alternative Character Encoding

Encode characters as either one or two groups of 2 bits.

= 00, = 01, = 10

= 11 00, = 11 01, = 11 10

apple, tree, and flower would require 2 bits in this encoding, pretzel, ball, and
house would require 4 bits

00 01 10 11 00 means apple, tree, flower, pretzel

00 11 11 would be ill-formed

When would such a variable-length encoding be a win?

Godmar Back Character Sets and Unicode 6/19 6 / 19

Character Sets in the Real World

There used to be many character sets that were of importance: ASCII,
ISO-8859-1, ISO-8859-2, ...

Typically, these character sets were not defined in a manner that separates the
abstract entities (“characters”) from their representation/encoding

They are all of only historical interest right now, because Unicode was defined as
character set to replace all existing ones

This is not to say that you may not encounter legacy data somewhere...

This is also not to say that you shouldn’t understand ASCII
Type man ascii

Godmar Back Character Sets and Unicode 7/19 7 / 19

The Unicode Standard

https://home.unicode.org/[1]

A universal character set that includes enough abstract character definitions to
express all major languages in the world (and then some).
Unicode 15.1 (Sep 2023) defines 149, 813 characters called “code points,” and
can accommodate up to 1,114,112 code points/characters in the future.

Code points are written using a number called a Unicode scalar value, like so: U+0041 but
they also have a name

Good news: many of these characters correspond to a single grapheme
(intuitively, a letter or symbol used in a world language)

Unicode Character “A” (U+0041) is Latin Capital Letter A
Unicode Character “Ä” (U+00C4) is Latin Capital Letter A with Diaeresis

Unicode Character (U+1F385) is Father Christmas

Bad news: that’s not always true. Unicode Character (U+0308) Combining
Diaeresis means: “Put an umlaut over the preceding character,” so the sequence
U+0041 U+0308 is one grapheme Ä that may be
indistinguishable from the grapheme expression U+00C4 when printed.

Godmar Back Character Sets and Unicode 8/19 8 / 19

https://home.unicode.org/

The Unicode Standard

Now that we have defined what the Unicode character set is, the big question
will be: How should we encode Unicode characters?

while in a program’s memory (in variables, a programming language’s “strings”, etc.)
while in transit or stored on disk

Fundamental trade-off: ease of processing vs efficiency of storage

To represent 1,114,112 code points, we would need 21 bits (221 = 2, 097, 152) in
an encoding that uses the same number of bits for each character

Will talk about three encodings designed for text in Western languages (note:
others exist, e.g. GB18030 optimizes encoding for Chinese characters).

Godmar Back Character Sets and Unicode 9/19 9 / 19

https://en.wikipedia.org/wiki/GB_18030

The UTF-32 Encoding

The UTF-32 encoding sets aside 32 bits for each character and represents each
character using its code point number (aka “Unicode scalar value.”)

Has the advantage that we can find the n-th character in a sequence using
indexing a[i] - allows us to think of unicode “strings” as arrays of unicode
characters

e.g., is 0x0001F385

Disadvantages:
Wasteful: most files will use only a fraction of the possible characters (say U+0000 -
U+FFFF), and many files will use even fewer (say U+0000 - U+007F). For common
English texts, encounter overhead of 4× compared to ASCII.
Endianness must now be defined (e.g., infamous BOM mark) or preassumed

Linux’s wchar t is 32 bits and uses this encoding

C11’s string literals support it as well (U”....”) with char32 t

Godmar Back Character Sets and Unicode 10/19 10 / 19

The UTF-16 encoding

If UTF-32 is too wasteful, then let’s use 16-bits (2 bytes) to represent each
character

Now some characters will take 2 bytes, others will take 4 bytes. If 4 bytes, the
first 2 bytes are called a “surrogate”

is 0xD83C 0xDF85

Advantages: more compact than UTF-32, and we can index as an array ...
unless surrogates are used.

Disadvantages:
still wasteful for many unicode sequences
error prone - i-th code unit is not i-th unicode character

Unfortunately, this is the model chosen in both Java and JavaScript :-(

Godmar Back Character Sets and Unicode 11/19 11 / 19

The UTF-8 encoding

Variable-length encoding that uses 1, 2, 3, or 4 bytes to encode a Unicode
character/code point.

is 0xF0 0x9F 0x8E 0x85

Advantages:
Space efficient, optimizing for common case
7-bit ASCII strings are valid UTF-8 - thus no storage overhead for many English texts (and
program code, etc.)
Can synchronize with input stream in at most 3 characters

Disadvantage:
Retrieving the n-th character via indexing is impossible

UTF-8 is by far the most common encoding when Unicode content is
transmitted and/or stored

UTF-8 is the format of built-in strings in languages like Go and Rust - these
languages do not abstract the encoding away

Godmar Back Character Sets and Unicode 12/19 12 / 19

Q. Given a bunch of bytes, can we tell if it represents an
encoding of a character set?

In general, no.

Legacy encodings (e.g., ISO-8859-1 are single-byte encodings that encode their
256 possible values using 0..255 — any random set of bytes will be a “valid”
encoding of a string of ISO-8859 characters

We can tell if it’s not valid UTF-8 since not all byte sequences are valid UTF-8,
but there’s no guarantee that something that looks like valid UTF-8 is in fact an
encoding of Unicode characters - could be coincidence
Consequence: we cannot reliably interpret a file or transmitted object unless we
receive or assume out-of-band information about the character set encoding of
this file or object

HTTP responses include: Content-Type: text/html; charset=UTF-8

Files that are stored in most file systems (Linux, Windows) rely on the user or opening
program to be interpreted correctly. They generally do not keep track of information such
as “this file’s content is meant to be interpreted as UTF-8 encoded Unicode.”
Suffixes are just conventions.

Godmar Back Character Sets and Unicode 13/19 13 / 19

Practical Questions

What Unicode encoding does a language use or provide to represent Unicode
strings?

How can common string operations (indexing, searching for characters, etc.) be
implemented?

Do the I/O facilities perform conversion from an encoding to an internal
representation (“decoding”) and conversion form an internal representation to
an encoding?

If so, which facilities do not do that, but operate on bytes instead?

Godmar Back Character Sets and Unicode 14/19 14 / 19

Example: Java (1.1 or later)

String representation is UTF-16
To extract actual Unicode scalar values, need to use CharSequence.codePoints

I/O facilities that refer to ‘characters’ or ‘character-stream‘ decode on input and
encode on output

But, not always to/from UTF-8 by default. On Windows, windows-1252 is used.

By default, InputStreamReader ignores decoding errors, provide your own
Decoder to control this

Can use java.lang.Character methods to determine UTF-16 encoding -
scalar values that require 2 UTF-16 code units are called “surrogate pairs,” see
isHighSurrogate() etc.

Godmar Back Character Sets and Unicode 15/19 15 / 19

Example: Python 3

Python 3 strings are Unicode

Can be thought of as ‘UTF-32‘ - fully indexable, searchable, etc.

Language optimizes under the hood

Most attempts to mix Unicode strings and variables representing encoded strings
(i.e., bytes) will result in a TypeError (one exception: ==)

I/O in text mode converts from Unicode representation/encoding to internal
Unicode strings

Unicode finally done right?

Only Swift (Apple’s language for iPhones) goes one step further and abstracts
away grapheme clusters, e.g., U+0041 U+0308 (A with combining diaeresis) is
turned into U+00C4 automatically. (in Python 3, requires
unicodedata.normalize)

Godmar Back Character Sets and Unicode 16/19 16 / 19

Example: Rust + Go

Language’s string type represents UTF-8 encoded strings
e.g., can’t treat as array of Unicode scalar values

Decoding/Encoding is not abstracted away from programmer

Need to use crates/packages if Unicode processing is desired

Godmar Back Character Sets and Unicode 17/19 17 / 19

Example: C11

Limited facilities:

wchar t performs encoding/decoding in “locale” defined encoding - on Linux, if
set to UTF-8, corresponding to single Unicode scalar values

Limited support for processing Unicode in internal representation

However, many C library functions that were designed for traditional, byte-based,
00-terminated strings apply as well if these strings represent UTF-8 encoded
Unicode strings. (But, a string of just zeros is valid UTF-8 but cannot be
expressed here.)

Godmar Back Character Sets and Unicode 18/19 18 / 19

References

[1] Unicode Consortium, The.
The Unicode Standard.
The Unicode Consortium, September 2023.
https://www.unicode.org/versions/latest/.

Godmar Back Character Sets and Unicode 19/19 19 / 19

https://www.unicode.org/versions/latest/

