
Semaphores

Godmar Back

Virginia Tech

October 8, 2024

Godmar Back Semaphores 1/8 1 / 8

Coordinating Threads

A common task is for multiple threads to coordinate regarding the
occurrence of events, e.g:

”has thread A computed a value thread B wants to use?”

Sometimes called a “ordering,” “precedence,” or “scheduling
constraint”, e.g. “Must do Y after X”.

Note:

Although the participating threads usually share state, this is a different
problem from coordinating access to such state (for which mutual
exclusion is a solution)

Godmar Back Semaphores 2/8 2 / 8

Coordinating Threads

A solution to this problem should be

Correct (thread B should never miss the event that thread A has
computed its value)

Efficient

Not waste resources (i.e., busy-waiting)
Does not induce unnecessary delay (e.g. not rely on thread B
periodically polling)

Semaphores provide a first solution to this problem.

Godmar Back Semaphores 3/8 3 / 8

Semaphores

Semaphores are an abstraction introduced by Edsger Dijkstra [2] in the
1960’s. A semaphore is an ADT that encapsulates a counter S and
provides 2 operations for it:

P(S) aka “down” or “wait” – if counter value is greater than zero,
decrement it. Otherwise, block until it becomes greater than zero,
then decrement it.

V(S) aka “up” or “signal” or “post” – increment the counter’s value,
and (if necessary) ensure that any threads blocked in a P(S)
operation are unblocked.

Programmer chooses initial value Vi

Semaphore Invariant

Vi + |U| − |D| ≥ 0 where |U| and |D| are the numbers of completed up-
and down operations, respectively. (“Semaphore doesn’t go negative”)

Producer
int coin_flip;

sem_t coin_flip_done; // semaphore for thread 1 to signal coin flip

// requires sem_init(&coin_flip_done, 0, 0) to give initial value 0

static void * thread1(void *_)

{

coin_flip = rand() % 2;

sem_post(&coin_flip_done); // raise semaphore, increment, 'up'

printf("Thread 1: flipped coin %d\n", coin_flip);

}

Consumer
static void * thread2(void *_)

{

// wait until semaphore is raised, then decrement, 'down'

sem_wait(&coin_flip_done);

printf("Thread 2: flipped coin %d\n", coin_flip);

}

Godmar Back Semaphores 5/8 5 / 8

Discussion

Code works now matter the relative order in which threads arrive at
the sem wait and sem post calls.

Semaphores can be used to solve a number of classical
synchronization problems, see [3] for examples.

Semaphores are a more general synchronization device: a “binary
semaphore,” which can only take the values 0 and 1, can be used to
solve the mutual exclusion problem.

Can be generalized to represent acquisition/release of up to N
resources by setting initial value to N.

Using semaphores for mutual exclusion is not however recommended,
mutexes (e.g., pthread mutex t) should be used instead [1].

Godmar Back Semaphores 6/8 6 / 8

Using a semaphore for mutual exclusion
1 sem_t S;

2 sem_init(&S, 0, /*initial value=*/ 1);

3

4 void lock_acquire()

5 { // try to decrement, wait if 0

6 sem_wait (S);

7 }

8

9 void lock_release()

10 { // increment (wake up waiters if any)

11 sem_post(S);

12 }

How do I tell what a semaphore is used for?

Look at the initial value: if 1, the semaphore represents a mutex. If 0, the
semaphore is used for ordering.

References

[1] Bryan Cantrill and Jeff Bonwick.
Real-world concurrency.
Queue, 6(5):16–25, September 2008.

[2] Edsger W. Dijkstra.
Ewd-74: Over seinpalen.
E.W. Dijkstra Archive. transcription, n.d.

[3] Allen B. Downey.
The Little Book of Semaphores.
available online.

Godmar Back Semaphores 8/8 8 / 8

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD00xx/EWD74.html
https://greenteapress.com/wp/semaphores/"

