Linking and Loading - Part Il

Godmar Back

Virginia Tech

October 17, 2024

\/a

VIRGINIA TECH

Godmar Back Linking & Loading Il 1/10 1/10

Software Engineering Aspects

I header1.h I I header2.h I I header3.h I
y v v y vp
; : sourcel.c: (C source code source2.c: (C source code reprocessor
Complle Tlme (#include ‘heade(m.h"‘ #include “headerl.h") (#include ‘headirZ h”, #include header)3 h")
y y ¥ Compiler
sourcel.s source2.s
Assembly Code Assembly Code
¥ Assembler
''''''''' y »
.) source1.0 source2.0 + static Linker
Link Time Object Code \ Object Code libraries ¥ Linker
¥ \ /
___________ I main (Executable) I I + dynamic libraries I I other programs I
] v v
Load Time I Process1 I I Process2 I I Process3 loader/
___________ dynamic
! ! ! YMMU i
Run Time | Physically Addressed RAM | linker

Figure 1: Compilation, Linking, and Loading in a typical System vz

VIRGINIA TECH

Godmar Back Linking & Loading 1l 2/10 2/10

Static Libraries

@ ldea: precompile commonly used functions into object .0 modules, then package
those .0 modules into .a archives called static libraries
@ .a archives are maintained by the ar(1) command, which creates simple sequential archives
o NB: since .0 modules are either included in their entirety, or not at all, typical libraries such
as the C library (libc) or the Math library (libm) thus contain thousands of .o files
@ Questions
@ how does the linker select which .0 modules to include in the linking process?
@ how are dependencies handled between libraries, i.e., if there is an external reference R in
modulel.o in library A that is defined in module2.0 in library B?
@ how expressive/powerful are static libraries as a package system?

\/a

VIRGINIA TECH

Godmar Back Linking & Loading 1l 3/10 3/10

A closer look at the linking process (sans libraries)

@ The linker processes .0 modules in the order given on the command line

@ Maintains set D of global symbols that have been defined by some already
processed module

@ Maintains set U of global symbols that have been referenced by some already
processed module but for which no definition was seen yet

@ For each .0 module processed, add new external references encountered to U
unless they are already in D

@ Add to D, and remove (if applicable) from U the global symbols defined by this
.0 module (if already in D, report “multiply defined” error)

o If at the end there are any symbols left in U, report “undefined symbol” failure

e Side note: this discussion applies to global symbols only. Local symbol

references are always resolved from the corresponding local symbol definitiW

(which exists if the code compiled correctly) - L.

Godmar Back Linking & Loading 1l 4/10 4/10

Extending the linking process to static libraries

@ Rule: when processing a library, the linker will include a .o module from this
library if and only if it defines a symbol that is currently in set U
@ "currently” refers to the position in the processing order given on the command line
o .o files in the same library that define symbols referenced by other .0 modules in the library
are included
o Advantages:
@ Include only those .o files that are needed
o Can override a library symbol by specifying a definition in a library that will be listed first
@ Disadvantages:
o Linking behavior depends on the exact order in which .o files and libraries are listed on the
command line
e May be necessary to list libraries in a certain order (classic -1Xm -1Xt -1X11), or even
multiple times if they have mutual dependencies, or use special linker grouping option

(--start-group/--end-group)
e Error prone and confusing

@ Linker maps help to track down how the linker resolved symbols :Z
VIRGINIA TECH

Godmar Back Linking & Loading 1l 5/10 5/10

Linking Static Libraries Visualized

not included

g N e N
wro]| e

a.0 Efi\\ Qgiik’// E;PMZO[}\ t:l?zo ‘
\ ‘ Al3i ‘ \E B|3.o|]‘
A.o[U] Bi4.o

gcc a.o b.o c.o -1A -1B

i

libA libB

| D - Defined (could be T,D, B) | N\ % \ J
| U - Unresolved |
Figure 2: Selection of modules when linking with static libraries VIRGINIA TECH

Godmar Back Linking & Loading 1l 6/10 6/10

Drawbacks of Static Libraries

@ Duplicate code if functionality is used by many programs
e e.g., the C library
o Cost in terms of storing larger executables in the file system
@ Cost in terms of needing more memory for each process that loads these executables;
inability to share this memory between processes even if they make use of the same library

@ Any updates requires recompilation (and redistribution) of each executable that
uses the code in question

o Costly to push updates to system libraries
@ Side Note: the inverse is that statically linked binaries come with all

dependencies included, and will work as long as the underlying OS supports the
system call API/ABI (Linux still runs binaries built in the 1990's)

\/a

VIRGINIA TECH

Godmar Back Linking & Loading 1l 7/10 7/10

Shared Libraries

aka shared objects (.so), or on Windows as dynamic-link libraries (DLL)

@ are loaded into a process's virtual address space at run time
@ this is implemented by cooperation of the build tools with the dynamic

linker /loader (ld-linux.so/ld-linux-x86-64.so in Linux)

o the executable still contains external references (U) that will be resolved at load time
@ recursive: a dynamically linked library may in turn have dependencies

also directly accessible via dlopen() for programs wishing to load shared objects
at run time, as done in plugin-based systems or applications

o flexible API, see [1] for details

such shared objects’ memory can shared by multiple processes, even if located at
different virtual addresses (memory must be read-only and content not be
dependent on the position at which it is mapped)

retains (mostly) the same semantics as if the program and libraries had bes%f,
linked statically

VIRGINIA TECH

Godmar Back Linking & Loading 1l 8/10 8/10

Implementation of Shared Libraries

@ Position-Independent Code (handles intra-library references)
@ 64-bit x86: PC-relative addressing mode ($rip)
@ 32-bit x86: requires “PC materialization” trick to obtain value of $eip

@ Indirection (needed for inter-library references, or references from executable to
library)

e If a library defines global function f or variable x, the addresses f and &x are not
known until the library is loaded

@ Solution: indirect function calls (via entries in PLT (Procedure Linkage Table))
e On-demand loading via trampolines: first access triggers jump into dynamic linker
@ subsequent jumps go straight to loaded function

@ In general, shared libraries introduce a marginal cost at runtime

\/a

VIRGINIA TECH

Godmar Back Linking & Loading 1l 9/10 9/10

References

[1] David M. Beazley, Brian D. Ward, and lan R. Cooke.
The inside story on shared libraries and dynamic loading.
Scientific Programming, pages 90-97, Sep/Oct 2001.

\/a

VIRGINIA TECH

Godmar Back Linking & Loading 1l 10/10 10/10

