
Implementing Job Control Shells

Godmar Back

Virginia Tech

September 17, 2024

Godmar Back Job Control Shells 1/5 1 / 5



Job Control Shells

A job control shell is a control program that allows a user to start and manage
programs from the command line

At their core, include a “read-eval“ loop

Shells support built-in commands, although by default they allow a user to run
an arbitrary program in a new process

Shells support arranging processes into pipes (typically via |)

Shells arrange for users to be able to terminate and stop jobs if desired

Shells support the user’s notion of foreground vs background jobs and inform the
OS of the user’s intent

Shells interact with the OS to learn about the fate of the jobs they started on
the user’s behalf, and inform the user about what they’ve learned

Godmar Back Job Control Shells 2/5 2 / 5



Foreground vs Background vs Stopped Jobs

User Expectations:
The shell waits for foreground jobs before outputting a new prompt
Foreground jobs receive user input
Foreground jobs can have full control of the terminal (e.g. vim)
Background jobs execute, but do not prevent further user interaction with the shell
Stopped jobs are neither foreground nor background

OS Support:
Minimal notion of fg/bg inside the OS
OS do maintain a foreground process group id for each terminal:

Control keys (Ctrl-Z, Ctrl-C), are turned into signals sent to foreground process group

Certain terminal operations cause a process to be stopped with SIGTTOU/SIGTTIN if attempted while

calling process’s group is not foreground group

In Linux, look for the plus + to see the fg process group

The shell’s task is to relay the user’s expectations to the OS, and to inform the user
of any events that result, while maintaining internal state that accurately reflects the
state of each job

Godmar Back Job Control Shells 3/5 3 / 5



Process Groups

Purpose: to group processes for the purposes of signal delivery
Sending a signal sends it all processes that are part of a process group
This applies to both signals sent via a system call (kill(2) or using killpg(3)) and
signals sent by the kernel (e.g. SIGTSTP, SIGINT, etc.)

Simple, cooperative management scheme:
Any process is part of exactly one process group at all times
Each group has a leader whose pid is used to determine its process group id
NB: Process groups may persist even if the leader process has already exited, as long as
there are still members alive
Any process may create a new process group, declaring itself as the leader
Any process may join (or be assigned to) an existing process group
Subject to permission restrictions

Intended use
Though the API is open to all processes, it’s commonly used by control programs (shells) to
arrange processes into groups that correspond to the jobs the shell manages, allowing the
user to kill entire groups and for Ctrl-Z/Ctrl-C to be sent to entire groups
Nice default behavior: a fork()’d child inherits the process group of its parent,
making it automatically subject to any signals delivered to the group

Godmar Back Job Control Shells 4/5 4 / 5



Job Control Process Group Arrangement Example

$ server &

$ computation |& grep -i error &

$ ls | grep cush

shell 
(pid=100, pgid=100)

server 
(pid=101, pgid=101)

grep -i error
(pid=105, pgid=104)

ls
(pid=106, pgid=106)

grep cush
(pid=107, pgid=106)

computation
(pid=104, pgid=104)

is parent

worker
(pid=102, pgid=101)

worker 
(pid=103, pgid=101)

foreground process group

“background” process 
group

Godmar Back Job Control Shells 5/5 5 / 5


