
Unix File Descriptors and Pipes

Godmar Back

Virginia Tech

September 10, 2024

Godmar Back File Descriptors and Pipes 1/7 1 / 7



Unix File Descriptors

A file descriptor is a handle that allows user processes to refer to files, which are
sequences of bytes

Unix represents many different kernel abstractions as files to abstract I/O
devices: e.g., disks, terminals, network sockets, IPC channels (pipes), etc.

Provide a uniform API, no matter the kind of the underlying object
read(2), write(2), close(2), lseek(2), dup2(), and more
May maintain a read/write position if seekable
But note: not all operations work on all kinds of file descriptors

Are represented using (small) integers obtain from system calls such as open(2)

Are considered low-level I/O

Are inherited/cloned by a child process upon fork()

Are retained when a process exec()’s another program

Are closed when a process exit()s or is killed

Godmar Back File Descriptors and Pipes 2/7 2 / 7



Standard Streams

By convention, 0, 1, 2 are used for standard input, standard output, and
standard error streams

Programs do not have to open any files; they are preconnected; thus programs
can use them without needing any additional information

Control programs (shell), or the program starting a program can set those up to
refer to some regular file, terminal device, or something else

When used, they access the underlying kernel object in the same way as if they’d
open it themselves

Programs should, in general, avoid changing their behavior depending on the
specific type of object their standard streams are connected to

Exceptions exist, e.g., flushing strategy of C’s stdio depends on whether standard output is
a terminal or not
Python 2 sys.stdout.encoding fiasco

Godmar Back File Descriptors and Pipes 3/7 3 / 7



File Descriptors – The subtle parts

To properly understand file descriptors, must understand their implementation
inside the kernel

File descriptors use 2 layers of indirection, both of which involve reference
counting

(integer) file descriptors in a per-process table point to entries in a global open file table
per-process file descriptor table has a limit on the number of entries
each open file table entry maintains a read/write offset (or position) for the file
entries in the open file table point to entries in a global “vnode” table, which contains
specialized entries for each file-like object

File descriptor tables are (generally) per-process, but processes can duplicate and
rearrange entries

Godmar Back File Descriptors and Pipes 4/7 4 / 7



In-Kernel Management of File Descriptors

Open File Table

vnode Table

/dev/pty/7; refcnt = 1

/tmp/file1; refcnt = 2

/tmp/file2; refcnt = 1

Network; refcnt = 1

r/w pos = ? 
refcnt = 4 

r/w pos = 200 
refcnt = 1 

r/w pos = 250 
refcnt = 1 

r/w pos = 500 
refcnt = 3

r/w pos = ? 
refcnt = 1 

r/w pos = ? 
refcnt = 1 

Pipe (Rd) refcnt = 1

r/w pos = ?
refcnt = 1

Pipe (Wr); refcnt = 1

0

1

2

3

4

5

0

1

2

3

4

5

P
ro

ce
ss

 1
P

ro
ce

ss
 2

Godmar Back File Descriptors and Pipes 5/7 5 / 7



File Descriptor Manipulation

close(fd):
clear entry in file descriptor table, decrement refcount in open file table
if zero, deallocate entry in open file table and decrement refcount in vnode table
if zero, deallocate entry in vnode table and close underlying object
for certain objects (pipes, socket), closing the underlying object has important side effects
that occur only if all file descriptors referring to it have been closed

dup(int fd): create a new file descriptor referring to the same open file table
entry as file descriptor fd, increment refcount; returns lowest available (unused)
file descriptor number

dup2(int fromfd, int tofd): if tofd is open, close it. Then, assign tofd to
the same open file entry as fromfd (as in dup(), increment refcount

On fork(), the child inherits a copy of the parent’s file descriptor table (and the
reference count of each open file table entries is incremented)

On exit() (or abnormal termination), all entries are closed

Godmar Back File Descriptors and Pipes 6/7 6 / 7



Pipes

write read
data

Figure 1: A Unix pipe is a FIFO, bounded buffer that provides the abstraction of a unidirectional
stream of bytes flowing from writer to reader

Writers:
can store data in the pipe as long as there is space
blocks if pipe is full until reader drains pipe

Readers:
drains pipe by reading from it
if empty, blocks until writer writes data

Pipes provide a classic “bounded buffer” abstraction that
is safe: no race conditions, no shared memory, handled by kernel
provides flow control that automatically controls relative progress: e.g., if writer is
BLOCKED, but reader is READY, it’ll be scheduled. And vice versa.

Created unnamed; file descriptor table entry provide for automatic cleanup
Godmar Back File Descriptors and Pipes 7/7 7 / 7


