
Condition Variables & Monitors

Godmar Back

Virginia Tech

October 10, 2024

Godmar Back Condition Variables & Monitors 1/18 1 / 18



Outline

Condition variables provide another way of signaling between threads
with the goal of allowing one thread to signal one or more others.

Condition variables are easily one of the least understood mechanisms
in multithreaded programming.

E.g., the most common question is: what mutex is passed to
pthread cond wait() and why?

Condition variables (along with mutexes) are building blocks of a
larger abstraction called a monitor

In C, this abstraction must be implemented as an idiomatic pattern.

Approach

To understand condition variables, we must understand the ideas behind
monitors first.

Godmar Back Condition Variables & Monitors 2/18 2 / 18



Monitors

Key Insight

When threads interact, they usually share both state and a need to signal
each other regarding updates to this state. Updating and signaling are
thus interlinked.

Monitors combine a set of shared variables and operations on them

Think of a properly encapsulated Java class: all fields are private and
are accessed only via public methods

A monitor is associated with a single mutex that is acquired and
released upon entry & exit; thus methods form a critical section

A monitor may use one or more signaling queues

Godmar Back Condition Variables & Monitors 3/18 3 / 18



Infinite Buffer implemented in a Monitor

monitor buffer {

// implied: struct lock mlock;

private:

char buffer[];

int head, tail;

public:

produce(item);

item consume();

}

buffer::produce(item i)

{ // try { mlock.acquire()

buffer[head++] = i;

// } finally { mlock.release() }

}

buffer::consume()

{ // try { mlock.acquire()

return buffer[tail++];

// } finally { mlock.release() }

}

This (hypothetical) example shows the mutual exclusion facility that would
be added by a classic monitor. Each instance is given an implicit (hidden)
lock that is acquired upon method entry and released on all paths leaving
a method.

Godmar Back Condition Variables & Monitors 4/18 4 / 18



Bounded Buffer implemented in a Monitor

A bounded buffer may be empty or full. Thus, it is necessary for
producers and consumers to coordinate and make sure that

consumers learn when a buffer switches from empty to non-empty
producers learn when a buffer switches from full to non-full

As usual, we want a solution that is correct, efficient, and does not
introduce unnecessary delay

Solution: condition variables

Godmar Back Condition Variables & Monitors 5/18 5 / 18



Condition Variable

Are signaling queues that support 3 operations:

Wait(): add current thread to the queue and enter BLOCKED state
Signal(): if any threads are on queue, remove first thread and make it
READY
Broadcast(): remove all threads from the queue and make them
READY

Note that Signal() and Broadcast() have no effect if no threads are in
the queue

Misnomer: the condition variable doesn’t represent any “condition”
as such. Conditions are expressed as a general boolean predicate over
the monitor’s state: e.g. “is buffer empty?”

Godmar Back Condition Variables & Monitors 6/18 6 / 18



Finite Buffer with Condition Variables

monitor buffer {

condition items_avail;

condition slots_avail;

private:

char buffer[];

int head, tail;

public:

produce(item);

item consume();

}

Subtle requirement: to avoid
deadlock, threads waiting on a
condition variable must leave the
monitor (e.g. release its lock).

buffer::produce(item i)

{ /* wait while buffer is full */

while ((tail+1-head)%CAPACITY == 0)

slots_avail.wait();

buffer[head++] = i;

items_avail.signal();

}

buffer::consume()

{ /* wait while buffer is empty */

while (head == tail)

items_avail.wait();

item i = buffer[tail++];

slots_avail.signal();

return i;

}

Godmar Back Condition Variables & Monitors 7/18 7 / 18



Condition Variable – Wait Operation

The Wait operation involves 3 steps

Release monitor lock
Add current thread to queue and enter BLOCKED state
(Once unblocked as a result of a Signal or Broadcast operation),
reacquire monitor lock

The release + block steps are atomic, that is, no other thread will be
able to acquire the lock before the thread was added to the queue.
This ensures that no wakeups are lost.

But the unblock and reacquisition steps are not: a woken-up thread
reentering the monitor is not given preference when reentering the
monitor compared to threads entering elsewhere.

Godmar Back Condition Variables & Monitors 8/18 8 / 18



Condition Variable – Rechecking the condition after Wait()

The condition that caused a thread to wait must be rechecked after
returning from Wait() – this implies a while loop, because:

1 Other threads may be acquiring the lock before the thread returning
from Wait(). Example

Thread A (consumer) calls consume(), queue is empty, calls Wait()
and blocks.
Thread B (producer) call produce(), adds item, signals. Thread A is
woken up (READY), but has not reacquired lock.
Thread C (consumer) calls consume()

Thread C acquires monitor lock first, removes item produced by B
Thread A gets the monitor lock, returns from Wait() but no item is in
the queue. Correct action now is to recheck and call Wait() again.

2 Spurious wakeups are allowed by the specification.

Godmar Back Condition Variables & Monitors 9/18 9 / 18



IEEE Std. 1003.1

When using condition variables there is always a Boolean predicate
involving shared variables associated with each condition wait that is true
if the thread should proceed. Spurious wakeups from the
pthread cond timedwait() or pthread cond wait() functions may
occur. Since the return from pthread cond timedwait() or
pthread cond wait() does not imply anything about the value of this
predicate, the predicate should be re-evaluated upon such return.

POSIX.1 2008

An added benefit of allowing spurious wakeups is that applications are
forced to code a predicate-testing-loop around the condition wait. This
also makes the application tolerate superfluous condition broadcasts or
signals on the same condition variable that may be coded in some other
part of the application. The resulting applications are thus more robust.
Therefore, POSIX.1-2008 explicitly documents that spurious wakeups may
occur.

https://pubs.opengroup.org/onlinepubs/009695399/functions/pthread_cond_timedwait.html
https://courses.cs.vt.edu/~cs3214/slologin/posix1003.1-2008-standard.pdf


Bounded Buffer (working C implementation)

#define CAPACITY 10

// internal bounded buffer state

static int buffer[CAPACITY];

static int tail, head;

// protects the monitor: buffer, head, tail

static pthread_mutex_t buffer_lock = PTHREAD_MUTEX_INITIALIZER;

// items available for consumption

static pthread_cond_t items_avail = PTHREAD_COND_INITIALIZER;

// buffer slots available for production

static pthread_cond_t slots_avail = PTHREAD_COND_INITIALIZER;

void produce(int item);

void consume();

Godmar Back Condition Variables & Monitors 11/18 11 / 18



Bounded Buffer, cont’d

void produce(int item)

{

pthread_mutex_lock(&buffer_lock); // Enter monitor

while ((head + 1 - tail) % CAPACITY == 0)

// Add calling thread to 'slots_avail' queue

// Leave monitor (release buffer_lock)

// Block

// Enter monitor (acquire buffer_lock)

pthread_cond_wait(&slots_avail, &buffer_lock);

// invariant: (a) buffer_lock is held

// (b) slot is available

printf("thread %p: produces item %d\n", (void *)pthread_self(), item);

buffer[head] = item; // update buffer state

head = (head + 1) % CAPACITY;

pthread_cond_signal(&items_avail); // wake up consumer (if any)

pthread_mutex_unlock(&buffer_lock); // Leave monitor

}

Godmar Back Condition Variables & Monitors 12/18 12 / 18



Bounded Buffer, cont’d

void consume()

{

pthread_mutex_lock(&buffer_lock); // Enter monitor

while (head == tail)

// Add thread to `items_avail` queue

// Leave monitor (release buffer_lock)

// Block

// Enter monitor (acquire buffer_lock)

pthread_cond_wait(&items_avail, &buffer_lock);

// invariant: (a) buffer_lock is held

// (b) item is available

int item = buffer[tail];

tail = (tail + 1) % CAPACITY;

printf("thread %p: consumes item %d\n", (void *)pthread_self(), item);

pthread_cond_signal(&slots_avail); // wake up producer (if any)

pthread_mutex_unlock(&buffer_lock); // Leave monitor

}

Godmar Back Condition Variables & Monitors 13/18 13 / 18



Comparison to Semaphores

Semaphores

Signal()/Post() are
remembered even when no
thread is currently blocked in
Wait()

Wait() may or may not block
the calling thread

Use when

number of waits()/posts()
matches
for one-off “rendezvous”

Require separate measures for
safe access to shared state

Condition Variables

Signal() has no effect when no
thread is currently blocked in
Wait()

Wait() always blocks the
calling thread

Must be used in conjunction
with the lock protecting the
shared state that may change

Use when

Coordinating about
arbitrary/complex state
changes

Godmar Back Condition Variables & Monitors 14/18 14 / 18



History

Classic monitors were invented by C.A.R. Hoare & Per Brinch-Hansen
in 1972/73 [3]. If integrated into a programming language, they
provide “safe” parallelism: the programmer cannot forget to lock
variables before accessing them - the compiler enforces this

Condition variables were used in the Mesa/Cedar System @ Xerox
PARC 1978

Later influenced the design of Java/C# (albeit without the safety [2])

Further reading: Arpaci-Dusseau 2018 [1]

Godmar Back Condition Variables & Monitors 15/18 15 / 18



Monitors/Condition Variables in Java

Every Java object can be used
as a monitor with exactly one
condition variable (via
java.lang.Object.*

methods wait() and
notify(), notifyAll().)

synchronized marks methods
that enter the monitor.

In hindsight, not a good design
choice: inflexible, and imposes
huge implementation cost on
JVM.

Java Monitor Example
class buffer {

private char buffer[];

private int head, tail;

public synchronized produce(item i) {

while (buffer_full())

this.wait();

buffer[head++] = i;

this.notifyAll();

}

public synchronized item consume() {

while (buffer_empty())

this.wait();

i = buffer[tail++];

this.notifyAll();

return ;

}

}

Godmar Back Condition Variables & Monitors 16/18 16 / 18



Condition Variables in java.util.concurrent

java.util.concurrent.*

provides more flexible means
to use the monitor pattern.

Multiple condition variables
may be associated with a lock.

Unfortunately, syntactic
support for monitor blocks was
then lost, requiring calls to
lock() and unlock() in
try/finally.

import java.util.concurrent.locks.*;

class buffer {

private ReentrantLock monitorlock

= new ReentrantLock();

private Condition items_available

= monitorlock.newCondition();

private Condition slots_available

= monitorlock.newCondition();

public /* NO SYNCHRONIZED here */

void produce(item i) {

monitorlock.lock();

try {

while (buffer_full())

slots_available.await();

buffer[head++] = i;

items_available.signal();

} finally {

monitorlock.unlock();

}

} /* consume analogous */

}

Godmar Back Condition Variables & Monitors 17/18 17 / 18



References

[1] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau.
Operating Systems: Three Easy Pieces.
Arpaci-Dusseau Books, 1.00 edition, August 2018.

[2] Per Brinch Hansen.
Java’s insecure parallelism.
SIGPLAN Not., 34(4):38–45, April 1999.

[3] C.A.R. Hoare.
Monitors: An operating system structuring concept.
Communications of the ACM, 17:549–557, October 1974.

Godmar Back Condition Variables & Monitors 18/18 18 / 18


