
Performance and Software Engineering Aspects of
Automatic Memory Management

Godmar Back

Virginia Tech

November 5, 2024

Godmar Back GC/Performance and SE 1/14 1 / 14



Performance Aspects

Real-world Garbage Collectors vary widely in the trade-offs they make. Decades
have been spent engineering them.

E.g. Java 10 ships with four different collectors; ZGC is a 5th collector added in 2018.

They differ in many characteristics: program throughput, memory overhead, GC
throughput, scalability, etc.

Having a good understanding of your workload is a must to properly tune the
garbage collector’s policies and understand its performance impact

Godmar Back GC/Performance and SE 2/14 2 / 14

https://docs.oracle.com/javase/10/gctuning/available-collectors.htm
https://openjdk.java.net/jeps/333


Modeling the Cost of GC

Compacting Collectors: Garbage collectors have near perfect knowledge of the
object graph and in particular the locations where pointers to other objects are
stored. Thus, they can move objects (and update any pointers to them),
allowing for compaction. Live objects are “evacuated” or “scavenged” from a
region of the heap, leaving only unreachable objects behind, eventually allowing
the region to be reclaimed in one fell swoop.

Cost of GC thus depends on
1 Cost of marking + evacuation - proportional to the size of the live objects in the area that

is marked
2 Cost of sweeping - in theory, constant. In practice, allocator will need to zero out memory

for reuse in most languages, thus proportional to the amount of garbage produced

Godmar Back GC/Performance and SE 3/14 3 / 14



Memory Allocation Time Profile

Figure 1: Memory Allocation vs Time in the absence of GC.
Amax denotes the heap limit. Garbage increases monotonically.

Godmar Back GC/Performance and SE 4/14 4 / 14



Simplified Memory Allocation Time Profile

Figure 2: Simplified memory allocation profile, showing one GC

Godmar Back GC/Performance and SE 5/14 5 / 14



Synthetic Example

LargeLiveHeap.java
public class LargeLiveHeap

{

public static void main(String []av) {

int numLive

= Integer.parseInt(av[0]);

int numAllocations

= Integer.parseInt(av[1]);

byte[][] l = new byte[numLive][];

for (int i = 0; i < numAllocations; i++)

l[i % numLive] = new byte[100000];

}

} Figure 3: numLive = 3, numAllocations = 12

How does GC time change with Amax?

Godmar Back GC/Performance and SE 6/14 6 / 14



Heap Size vs GC Frequency

Large Live Heap Sizes tend to increase frequency of garbage collections when
JVM approaches heap limit (in Java -Xmx switch)

Policy question: should JVM ask OS for more memory and if so, how much?

General trade-off between amount of memory JVM is willing to use and
achievable throughput

Traditional rule of thumb: budget 1.5× – 2.5× the size of the live heap to stay
within acceptable performance overhead compared to explicit allocation; but
appears to be too optimistic

Hertz 2005 [2]:
GC outperforms malloc with 5×
GC needs 3× for 17% degradation
With only 2× may be up to 70% slower

Performance degradation (“gc thrashing”) as live heap size approaches
maximum heap size

Godmar Back GC/Performance and SE 7/14 7 / 14



The Generational Hypothesis

Likelihood of objects to stay live increases over
time, aka “most objects die young”

Allocate objects in special area called
“nursery,” or “Eden” space which is collected
more frequently in minor collections

Evacuate surviving objects into older
generation(s) which is less frequently collected
in major collections

This requires coordination between mutator
(user program) and collector through write
barrier:

Mutator must inform collector of pointers into Eden
Space: old.field = young must add a root for
young

Figure 4: Generational Hypothesis

Godmar Back GC/Performance and SE 8/14 8 / 14



Garbage Collection vs Mutators

What if the reachability graph changes while GC takes place?
Must avoid inadvertently missing the last pointer to an object that keeps it alive

“Stop-the-World” approach. Stop all mutators while collecting. Leads to “GC
Pauses”

Incremental collection. Do small chunks of GC work while allocating objects

Concurrent/Parallel collection. GC runs in a separate thread that synchronizes
with mutator threads in some way - typically, the mutator informs the collector
of new edges created, and/or the collector informing the mutator when pointers
have changed

Godmar Back GC/Performance and SE 9/14 9 / 14



G1GC and ZGC

Current default collector: G1 GC see Beckwith 2013 and G1 Tutorial
Designed for multicore systems where idle cores are available to assist in GC

ZGC (2018), see ZGC Video (Listen to 7:51 on tuning)
Single generation collector with low latency (stops mutator only during root scanning)
Use load barriers to be able to move objects without stopping mutator

For a balanced perspective, recommend these blog posts:
Modern garbage collection: Hearn 2016
part 2: Hearn 2019

Godmar Back GC/Performance and SE 10/14 10 / 14

https://www.infoq.com/articles/G1-One-Garbage-Collector-To-Rule-Them-All/
https://www.oracle.com/technetwork/tutorials/tutorials-1876574.html
https://www.youtube.com/watch?v=7k_XfLGu-Ts
https://youtu.be/7k_XfLGu-Ts?t=471
https://blog.plan99.net/modern-garbage-collection-911ef4f8bd8e
https://blog.plan99.net/modern-garbage-collection-part-2-1c88847abcfd


Programmer’s Perspective

1 Your program runs out of memory (in Java, OutOfMemoryError is thrown).
This happens when your live heap size exceeds the memory limit, which typically
happens for one of the following 3 reasons:

Heap Size Limit is too low
Leaks
Bloat

2 Your program’s performance degrades because a lot of time is spent in GC
Churn
Lack of headroom

Godmar Back GC/Performance and SE 11/14 11 / 14



Leak vs Bloat vs Churn

Leaks: the live heap contains reachable objects that the program will not access
in the future (though it could), e.g.

items placed in hash maps that will not be looked up
event handlers and/or callbacks registered and not unregistered

Weak references allow garbage collector to free objects that can be recreated,
e.g. when caching

Bloat: your heap contains only objects your program will access, but these
objects take up too much space, e.g. [1]

Boxed integer in Java
Items stored in HashMaps

Memory Analysis tools help with leaks and bloat

Churn: your program allocates many short-lived objects (high allocation rate);
particularly important on resource-constrained devices such as Android [URL]

Godmar Back GC/Performance and SE 12/14 12 / 14

https://developer.android.com/topic/performance/memory#churn


Conservative Garbage Collection

Precise garbage collectors have precise information regarding the structure of all
heap objects and stack frames, thus precise knowledge of all locations that store
pointers

This is a viable assumption in managed languages: Java, C#, JavaScript,
Python, Go, but it’s (generally) not viable in C/C++

Conservative collectors scan the heap and assume anything that could be a
pointer is one

May keep some objects alive that are not reachable

Boehm’s GC is a well-known collector for C/C++

GC Safety is the property of a compiler to avoid producing code that could
mislead a garbage collector into missing pointers (available in C++11)

valgrind’s leak detection uses the same approach [URL]

Godmar Back GC/Performance and SE 13/14 13 / 14

https://www.hboehm.info/gc/
https://valgrind.org/docs/manual/mc-manual.html#mc-manual.leaks


References

[1] Adriana E. Chis, Nick Mitchell, Edith Schonberg, Gary Sevitsky, Patrick
O’Sullivan, Trevor Parsons, and John Murphy.
Patterns of memory inefficiency.
In Proceedings of the 25th European Conference on Object-Oriented
Programming, ECOOP’11, page 383–407, Berlin, Heidelberg, 2011.
Springer-Verlag.

[2] Matthew Hertz and Emery D. Berger.
Quantifying the performance of garbage collection vs. explicit memory
management.
In Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
’05, page 313–326, 2005.

Godmar Back GC/Performance and SE 14/14 14 / 14


