
CS 3214
Computer Systems

Godmar Back

Virtual Memory

Brief Review from CompOrg
• Virtual address:

– addresses used by user programs, linkers, etc. printf(“%p\n”, ptr);
– Range: 0…2^addresswidth

• Physical address:
– address used internally to address memory; not visible to user
– Range: 0…X where X is memory in computer

• Page: contiguous range of addresses, typical sizes are 4K
– Virtual page – contiguous range of virtual address
– Physical page (frame) – contiguous range of physical addresses

• MMU: Memory management unit that maps virtual to
physical pages based on information found in page tables

• TLB: Translation Lookaside Buffer:
– Caches such mappings

CS 3214

CS 3214

Virtual Memory

• Is not a “kind” of memory
• Is a technique that combines one or more

of the following concepts:
– Address translation (always)
– Paging from/to disk (usually)
– Protection (usually)

• Can make storage that isn’t physical
DRAM appear as though it were

CS 3214

Key goals for Virtual Memory
• Virtualization

1. Maintain illusion that each process has entire
memory to itself
• Per-process address spaces

2. Allow processes access to more memory than is
really in the machine (or: sum of all memory
used by all processes > physical memory)
• Makes DRAM a cache for disk

• Protection
1. make sure there’s no way for any process to

access another process’s data unintentionally
2. protect system-internal data/kernel data

Address Translation
• Provides a way for OS to interpose on memory

accesses
• OS maintains for each process a mapping

{ virtual addresses } → { physical addresses }
in a per-process page table
– Which virtual addresses are valid (depends on process

memory layout)
– Where they map to (depends on availability of physical

memory)
– What kind of accesses are allowed (read/write/execute)

• OS manages page tables
– Based on input/commands from user processes
– Based on resource management decisions

CS 3214

CS 3214

Address Translation & TLB
Virtual Address

TLB Lookup

Check Permissions

Physical AddressPage Fault Exception
“Protection Fault”

Page Table Walk

Page Fault Exception
“Page Not Present”

TLB Reload

Send SIGSEGV To Process

miss hit

restart instruction

page present else
okdenied

Load Page

done in hardware

done in OS software

done in software
 or hardware

Switching Address Spaces
• Following slides show how virtual-to-physical

mappings change on mode switch/context
switch/mode switch sequence
– Show a bit of kernel-level implementation detail

• In multi-threaded case, context switch may or
may not involve a change in current address
space

• Costs of switching address spaces adds to
context switch cost
– Mainly opportunity cost: need to flush TLB & then

take the misses to repopulate it

CS 3214

ustack (1)

CS 3214

Process 1 Active
in user mode

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)
user (2)
user (2)
user (2)

access possible in user mode

P1

CS 3214

ustack (1)

Process 1 Active
 in kernel mode

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)
user (2)
user (2)
user (2)

access possible in user mode

access requires kernel mode

P1

CS 3214

ustack (2)

Process 2 Active
in kernel mode

kernel
kernel
kernel
kernel

user (1)
user (1)
user (1)

ucode (2)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

freeuser (2)
user (2)

udata (2)

user (2)

access possible in user mode

access requires kernel mode

P2

CS 3214

ustack (2)

Process 2 Active
in user mode

kernel
kernel
kernel
kernel

user (1)
user (1)
user (1)

ucode (2)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

freeuser (2)
user (2)

udata (2)

user (2)

access possible in user mode

P2

Meltdown Mitigation

• Post Meltdown, kernel and user mode no
longer use the same page table.

• Therefore, the (red) kernel mappings are
no longer immediately accessible once the
processor switches into kernel mode.

• Requires additional page table switch
once the kernel is entered (expensive),
otherwise, it’s the same setup.

CS 3214

Paging to/from disk
• Idea: hold only those data in physical memory that are

actually accessed by a process
• Maintain map for each process

{ virtual addresses } → { physical addresses } ∪ { disk addresses }
• OS manages mapping, decides which virtual addresses

map to physical (if allocated) and which to disk
• Disk addresses include:

– Executable .text, initialized data
– Swap space (typically lazily allocated)
– Memory-mapped (mmap’d) files (see example)

• Demand paging: bring data in from disk lazily, on first
access
– Unbeknownst to application

CS 3214

Process
Memory
Image

kernel virtual memory

Memory mapped region for
shared libraries

run-time heap (via malloc)

program text (.text)

initialized data (.data)

uninitialized data (.bss)

stack

0

%esp

Not paged, or swap file

OS maintains structure of
each process’s address
space – which addresses
are valid, what do they
refer to, even those that
aren’t in main memory
currently

CS 3214

Backed by

swap file

swap space/file

swap space/file

swap space/file (*)

executable

code: shared .so file
data: swap file (*)

(*) first page-in from
executable

Try:
cat /proc/self/maps
(/proc/self/pagemap is a
binary file with info
about which pages is
present)

anonymous memory (via mmap)

Servicing Page Faults
• When process accesses address that is not currently

mapped, the hardware will signal a fault
– If address is in kernel space, or refers to unmapped region

• Send SIGSEGV to process
– Else determine which region address is in

• If heap, allocate new page (“minor fault”), or swap page from disk
• If code segment, read code from executable
• If first access to global variable, read data from disk; else swap from

disk
• If access to mmapped file, read data from file

– Establish new v-p mapping in page table, and retry
• Note: there are no page faults for pages that are present

in memory
– There may be TLB misses, however – on x86, these are

handled in hardware – can introduce hidden performance cost

CS 3214

CS 3214

Microscopic View of Stack Growth
push $ebp
sub $20, $esp
push $eax
push $ebx

0x8000
esp = 0x8004
esp = 0x8000

esp = 0x7FEC
esp = 0x7FE8

intr0e_stub:
 …
 call page_fault()
 …
 iret

Page Fault!

void page_fault() {
 get fault addr
 determine if it’s close to user $esp
 Yes: allocate page frame
 install page in page table
 No: signal SIGSEGV to process
}

esp = 0x7FE4

(Architecture
shown
is IA32)

fork()/exec() revisited
• fork():

– Clone page table of parent
– Set all entries read-only
– Perform copy on write (if it happens while shared)

• exec():
– Remove all existing page table entries

• Unshares parent’s entries
– Start over as per instructions in executable

• Optimizes common case: child does an exec()
shortly after fork()

CS 3214

P C

CS 3214

Process 1
vaddr

ke
rn

el
 s

pa
ce

us
er

 s
pa

ce
page (frame) of
physical DRAM

user virtual page in a
process‘s address
space, page is
present/resident

user virtual page in a
process‘s address
space, page is not
present; OS will page-in
on demand

unused virtual address
space
accesses here lead to
SIGSEGV

mapping in
currently active
page table (1 set
per CPU for
current process)

mapping in
currently inactive
page table (1 set
per process)

kernel virtual address
space; accesses here
lead to SIGSEGV

pa
ge

-in page-out

m
ap

s
to

m
m

ap
sb

rk
(P

O
S

)

munmap sbrk(NEG)

CS 3214

Process 1
vaddr

Process 2
vaddr

Process 3
vaddr

ke
rn

el
 s

pa
ce

us
er

 s
pa

ce

Physical
DRAM

CS 3214

Process 1
vaddr

Process 2
vaddr

Process 3
vaddr

ke
rn

el
 s

pa
ce

us
er

 s
pa

ce

Physical
DRAM

CS 3214

Process 1
vaddr

Process 2
vaddr

Process 3
vaddr

ke
rn

el

sp
ac

e
us

er

sp
ac

e

Physical
DRAM

CS 3214

Process 1
vaddr

Process 2
vaddr

Process 3
vaddr

Physical
DRAM

ke
rn

el
 s

pa
ce

us
er

 s
pa

ce

On-demand
Paging

CS 3214

Process 1
vaddr

Process 2
vaddr

Process 3
vaddr

Physical
DRAM

ke
rn

el
 s

pa
ce

us
er

 s
pa

ce

mmap()

CS 3214

Process 1
vaddr

Process 2
vaddr

Process 3
vaddr

Physical
DRAM

ke
rn

el
 s

pa
ce

us
er

 s
pa

ce

evicted
to swap

read from
file

Managing Physical Memory
• OS must decide what to use physical memory for

– Application Data
• Mostly per process, except for shared memory areas
• Heaps, stacks, BSS

– File Data (Single copy per file)
• Mmap’ed files, executables, shared libs
• Chunks of files recently accessed via explicit I/O

• When demand is greater than supply, must
rededicate physical memory by “evicting” pages to
disk
– Either done ahead of time with some hysteresis
– Or last minute (“direct reclaim”)

CS 3214

Page Replacement Strategies
• Prediction game: optimal strategy is to replace (“evict”) the

page whose data will be accessed farthest in the future
– Of course, can’t know that → use heuristics

• Most heuristics are based on “past = future” idea and
approximate LRU
– While adding guards against scenarios in which LRU is known to

fail, e.g. large looping accesses or single sequential reads
– Must approximate because per-access maintenance of LRU lists

is too expensive
• Must weigh file data vs. process data
• Must weigh other pages from same process vs. all

processes
– Local vs. global replacement policies

CS 3214

CS 3214 4/10/2020 27

VM Access Time & Page Fault Rate

• Consider expected access time in terms of fraction p of
page accesses that don’t cause page faults.

• Then 1-p is page fault frequency
• Assume p = 0.99, assume memory is 100ns fast, and

page fault servicing takes 10ms – how much slower is
your VM system compared to physical memory?

• access time = 99ns + 0.01*(10000100) ns ≈ 100,000ns
or 0.1ms
– Compare to 100ns or 0.0001ms speed ≈ about 1000x slowdown

• Conclusion: even relatively low page fault rates lead to
huge slowdown – must keep page fault rates very low

access time = p * memory access time
+ (1-p) * (page fault service time + memory access time)

Thrashing
• VM works well if working set size (amount of

memory accessed within an interesting time
span) can be accommodated in physical
memory

• If working set size grows too large, OS will
continuously service page faults, and end up
evicting pages accessed soon after

• Result: “thrashing”
– Moving data to/from disk continually while not

making progress on computation
– Leads to low CPU utilization

CS 3214

Prefetching

• All modern VM systems use prefetching
– Usual strategy: detect sequential accesses to file

• even if done via virtual memory system & mmaped files
– Sometimes application-guided

• Linux readahead(2) system call
• E.g. Windows Vista remembers which data an

application touched (speeds up startup time)

• The performance of a VM system depends
both on its page replacement and its
prefetching strategies

CS 3214

VM viewed as a
cache for disk

• Blocksize
– Large (typically page), reflects high cost to initiate disk

transfer
• Associativity

– Full
• Tag storage overhead

– Low relative to block size
• Write back cache
• Miss penalty

– High: ~4-20ms
• Miss rate

– Must be extremely low so that average access time ~
DRAM access time

CS 3214

Summary

• Virtual memory is a technique that
combines
– Address translation (Indirection)
– Demand paging
– Protection

to virtualize physical memory and protect
applications and the kernel
• It is transparent to applications except for

its possible performance impact

CS 3214

