
CS 3214 Fall 2023 Midterm

October 31, 2023

• This is a closed-book, closed-internet, closed-cell/smart phone or watch and closed-computer exam.
However, you may refer to your sheet of prepared notes.

• Your exam should have 12 pages with 4 questions totaling 100 points. You have 75 minutes. Please
write your answers in the space provided on the exam paper.

• If you finish the exam early you are expected to leave the room very quietly. If you finish within 15
minutes or less before the end of the allotted time, please stay in your seat until the end.

• Answers will be graded on correctness and clarity. The space in which to write answers to the
questions is kept purposefully tight, requiring you to be concise. You may lose points if your solution
is more complicated than necessary or if you provide extraneous information along with a correct
solution.

Name (printed) PID @vt.edu

Section: □ Dr. Back □ Dr. Butt □ Dr. Williams

I accept the letter and the spirit of the Virginia Tech undergraduate honor code — I have not given or
received aid on this exam.

(signed)

You are expected to keep the content of this exam secret until told otherwise by your instructor. Please
do not start until instructed to do so.

Problem Score

1 Operating System Concepts (20 pts)

2 Unix Processes and IPC (23 pts)

3 Multithreading (38 pts)

4 Development and Linking (19 pts)

Total

CS 3214 Midterm Fall 2023

1 Operating System Concepts (20 pts)

1.1 Basic OS Ideas (10 pts)

Check if the following statements are true or false.

a) One of the major tasks of an operating system is the protection and isolation of different processes
from each other and from the system’s kernel.

□ true / □ false

b) Stable OS interfaces allow us to write code that once compiled, runs on different machines with the
same or a compatible instruction set architecture (ISA) and can interface with its environment.

□ true / □ false

c) Dual-mode operation refers to the permission system resulting from having unprivileged users (e.g.
your account on rlogin) and privileged admin users, i.e., admin mode vs user mode.

□ true / □ false

d) It is possible for two processes to use the same addresses for their variables without conflicting with
each other.

□ true / □ false

e) Because the OS kernel is usually a program systems designers trust to be correct, defending against
vulnerabilities in kernel code is substantially harder than defending against vulnerabilities in user
mode.

□ true / □ false

1.2 On Process States and Scheduling (10 pts)

In class, we discussed how to model the execution of processes using a simplified process state model.
Determine whether the following statements are true or false.

a) To help prevent attacks, on most OS, the number of processes that are currently in the RUNNING state
is a closely guarded secret accessible only to system administrators.

□ true / □ false

b) System calls such as read() frequently transition a process into the BLOCKED state.

□ true / □ false

c) OS are designed to avoid situations in there are some READY processes assigned to a CPU, but no
RUNNING process.

□ true / □ false

d) On a well-balanced machine with n CPUs (or cores) a user controlling the machine would typically
find n processes in the READY and n processes in the RUNNING state.

□ true / □ false

e) A laptop’s battery life is heavily related to how much blocking is encountered on the machine, that
is, the time-averaged number of BLOCKED processes in the system.

□ true / □ false

2

CS 3214 Midterm Fall 2023

2 Unix Processes and IPC (23 pts)

2.1 Of Pipes and Tees (8 pts)

In lecture, we had discussed how Unix pipes work: among other uses, they allow one program to take their
input from another program’s output. The program’s output may in turn become the input of yet another
program, and so on. Sometimes, it is desirable to save a copy of all data that flowed through one of these
pipes. To do that, Unix introduced the program tee. It works like so. Suppose we want to count on how
many lines the word fopen occurs in T.c. We could run

$ grep fopen T.c | wc -l

1

and obtain the answer 1. If we run

$ grep fopen T.c | tee pipe.log | wc -l

1

(we insert a ‘T‘ into the pipe), a file pipe.log is created with this content:

$ cat pipe.log

FILE *f = fopen(av[1], "w");

Implement tee in a language of your choice. For the purposes of this problem, we will ignore the
distinction between byte streams that represent a valid character encoding and those that do not. Put
another way, your implementation of tee may assume that only ASCII data is being sent through the pipe
into whose place your implementation of the tee command is inserted. Even though the question does not
ask for a specific language, pseudocode is not accepted.

3

CS 3214 Midterm Fall 2023

2.2 What Did the User Type? (15 pts)

Consider the following excerpts of 3 system call traces that were taken from Dr. Back’s cush implementa-
tion:

1 Excerpt from cush's strace:

2 pipe2([4, 5], O_CLOEXEC) = 0

3 clone(child_stack=0x14ce70b78210, flags=CLONE_VM|CLONE_VFORK|SIGCHLD) = 604094

4 clone(child_stack=0x14ce70b78210, flags=CLONE_VM|CLONE_VFORK|SIGCHLD) = 604095

5 close(5) = 0

6 close(4) = 0

7 wait4(-1, [{WIFEXITED(s) && WEXITSTATUS(s) == 1}], WSTOPPED, NULL) = 604094

8 wait4(-1, [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], WSTOPPED, NULL) = 604095

9

10 Excerpt from strace of process 604094:

11 setpgid(0, 0) = 0

12 dup2(5, 1) = 1

13 close(5) = 0

14 dup2(1, 2) = 2

15 execve("/usr/bin/gcc", ["gcc", "-v", "badfile.c"], 0xb1af40 /* 48 vars */) = 0

16

17 Excerpt from strace of process 604095:

18 setpgid(0, 604094) = 0

19 dup2(4, 0) = 0

20 close(4) = 0

21 execve("/usr/bin/grep", ["grep", "error"], 0xb1af40 /* 48 vars */) = 0

Note that these are given in order, but without timestamps, so nothing should be assumed about how
much time has passed between calls. Answer the following questions:

a) (2 pts) What do the calls on lines 3 and 4 do?

b) (2 pts) Why are the calls to close on lines 5 and 6 necessary?

c) (2 pts) What does line 14 do?

d) (2 pts) What is the combined effect of lines 11 and 18? (Recall that setpgid(a, b) sets process a’s
process group to b. If a is zero, it refers to the current process. If b is zero, a new process group is
created.)

4

CS 3214 Midterm Fall 2023

e) (5 pts) What could the user have typed into cush to produce this strace?

f) (2 pts) Can you tell based on the excerpts whether the user started a foreground or a background
job? Justify your answer.

3 Multithreading (38 pts)

3.1 What Abstraction is it Anyway? (14 pts)

Consider the following four real-world scenarios (not all equally realistic). For scenario, identify which
abstraction it illustrates, specifically within the context of multithreaded programming. If the
abstraction has multiple parts, name each one.

a) (3 pts) An elementary school classroom has a hallpass system that works like this: when a student
needs to use the bathroom, they check if the hallpass is available. If so, they take it, use the bathroom,
and return it. Students have to wait for the hallpass to be returned in order to use the bathroom.

b) (3 pts) A group of students is fundraising for the school band. They decide to meet at one student’s
house who lives in the neighborhood. They then take a map of the neighborhood and assign one
street to each student. Then the students leave the meeting house to canvas their assigned street.
Once a student is done with their assigned street, they’ll return to the meeting house from which
they started and hands their collected money to the parent of the student who lives there, who will
then send the money to the band.

5

CS 3214 Midterm Fall 2023

c) (5 pts) A person lives in a house with a particular kind of doorbell. When pressed, it will ring only
in the person’s bedroom and is not heard anywhere else. The person is expecting a package, but
they are also tired and would like to catch up on sleep, so they devised the following system. They
install a remote-controlled gate on their porch which they can operate from their bedroom. They
then proceed as follows: they lock the gate (so that the delivery person cannot get onto the porch to
leave packages), then they check if a package perhaps was already left (in case the delivery person
had already arrived earlier). If no package was already left, they go their bedroom and remotely
release the gate lock. Once in their bedroom, they will be able to hear the doorbell when the delivery
occurs. Every so often, they are woken up by the doorbell, go to their front door, but don’t see a
package. (This may happen if their neighbor saw the delivery person after they dropped off a package
and took the package for safe keeping before the homeowner had a chance to hit the remote lock
button for their porch gate after hearing the doorbell.)

d) (3 pts) Two hikers take different paths up a mountain. The two paths cross at one point. One hiker
is typically slower than the other, but they can’t be certain who will reach the crossing point first.
They agree on the following protocol: if the faster hiker will reach the crossing point first, they will
wait there for the slower hiker. If the slower hiker will reach the crossing point first, they will leave
a marker of 3 rocks and move on. If the faster hiker arrives at the crossing point later and sees the
marker of rocks, they know that the slower hiker was actually there before them and they will move
on (after destroying the marker).

3.2 Data Race or Not (8 pts)

Consider the C program on the next page

6

CS 3214 Midterm Fall 2023

1 #include <pthread.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <stdint.h>

5 const int N_THREADS = 4;

6

7 static int X[4];

8

9 static void*

10 thread_func(void *_arg)

11 {

12 uintptr_t myindex = (uintptr_t) _arg;

13 X[myindex] = 42-myindex;

14 return NULL;

15 }

16

17 int

18 main()

19 {

20 pthread_t t[N_THREADS];

21 for (uintptr_t i = 0; i < N_THREADS; i++) {

22 pthread_create(t+i, NULL, thread_func, (void *) i);

23 }

24

25 int s = 0;

26 for (int i = 0; i < N_THREADS; i++) {

27 pthread_join(t[i], NULL);

28 s += X[i];

29 }

30 printf ("%d \n " , s);

31 }

a) (6 pts) The C11 memory model defines a data race as follows:

When an evaluation of an expression writes to a memory location and another evaluation
reads or modifies the same memory location, the expressions are said to conflict. A program
that has two conflicting evaluations has a data race unless either

• both conflicting evaluations are atomic operations

• one of the conflicting evaluations happens-before another

Identify all pairs of conflicting evaluations in this code. Specify, for each pair,

i) the memory location

ii) which threads are involved (call them T1, T2, T3, T4, and Main), and

iii) for each thread, on which line number the conflicting evaluation occurs for that particular thread
and whether it is a read or write

7

CS 3214 Midterm Fall 2023

b) (2 pts) Does the program contain a data race under the above definition? Justify why or why not.

3.3 How Not To Use Condition Variables (3 pts)

Consider the following excerpt from a student’s p2 implementation:

pthread_mutex_lock(&pool->mutex);

pthread_cond_wait(&pool->cond, &pool->mutex);

pthread_mutex_unlock(&pool->mutex);

Describe one way in which this code will fail independent of the remainder of the code, that is, inde-
pendent of whether this snippet is part of some larger loop or not.

3.4 Semaphore Puzzle (8 pts)

For this exam’s semaphore puzzle, we will provide the answer: it’s either TRICK or TREAT. Your job is
to complete a multithreaded program whose only possible outputs consist of these two strings.

8

CS 3214 Midterm Fall 2023

1 #include <pthread.h>

2 #include <semaphore.h>

3 #include <stdio.h>

4

5 sem_t s1, s2, s3, s4;

6 char *tail;

7

8 static void* thread_T(void *_)

9 {

10 printf("T");

11

12 return NULL;

13 }

14

15 static void* thread_R(void *_)

16 {

17

18 printf("R");

19

20

21 return NULL;

22 }

23

24 static void* thread_I(void *_)

25 {

26

27

28 tail = "ICK" ;

29

30

31 return NULL;

32 }

33

34 static void* thread_E(void *_)

35 {

36

37

38 tail = "EAT" ;

39

40

41 return NULL;

42 }

43

44 static void* thread_tail(void *_)

45 {

46

47

48 printf("%s \n " , tail);

49 return NULL;

50 }

51

52 int main()

53 {

54 sem_init(&s1, 0, 0);

55 sem_init(&s2, 0, 0);

56 sem_init(&s3, 0, 0);

57 sem_init(&s4, 0, 1); // note semaphore 4 has initial value 1

9

CS 3214 Midterm Fall 2023

58

59 const int N_THREADS = 5;

60 void * (*f[])(void *) = { thread_T, thread_R, thread_I, thread_E,

61 thread_tail };

62

63 pthread_t t[N_THREADS];

64 for (int i = 0; i < N_THREADS; i++)

65 pthread_create(t+i, NULL, f[i], NULL);

66

67 for (int i = 0; i < N_THREADS; i++)

68 pthread_join(t[i], NULL);

69 }

Fill in the necessary statements directly above. No other changes shall be made to the program, and
you may not remove any statements. We provided vertical space proportional to the number of statements
expected (which is a total of 14 lines needing statements). Pay particular attention to semaphore s4, which
has an initial value of 1. Your program must be data race free. Make sure that all threads in the program
finish, i.e., none remains blocked.

3.5 Breaking Up Locks (5 pts)

A common bit of performance advice is to start a multithreaded design with a single, global lock, breaking
it up only when necessary.

i) (2 pts) Describe briefly when it would be necessary to “break up” a lock.

ii) (3 pts) What activities does “breaking up“ a lock mean in practice when you apply it to your design?
Provide a very brief description.

10

CS 3214 Midterm Fall 2023

4 Development and Linking (19 pts)

4.1 Compilation, Linking, and Symbol Tables (13 pts)

Consider the following program:

$ cat prog.c

extern int add_10(int x);

int x = 32;

static int *y = &x;

int main(int argc, char **argv) {

return add_10(*y);

}

a) suppose you typed ‘gcc -c prog.c‘.

i) (2 pts) What parts of the compilation toolchain ran? (preprocessor, compiler, assembler, linker)

ii) (2 pts) What filename would be generated?

iii) (4 pts) What symbols would the linker see in the generated file and what type are they (e.g.,
the output of ‘nm‘)?

b) suppose you typed ‘gcc prog.c‘.

i) (2 pts) What parts of the compilation toolchain ran? (preprocessor, compiler, assembler, linker)

ii) (3 pts) What output would you expect on the shell?

11

CS 3214 Midterm Fall 2023

4.2 Linking and Scope (6 pts)

Consider the following header file mod.h:

static int x = 42;

extern void decX(void);

extern void decY(void);

extern void dec(int *);

extern int y;

and the C source files mod1.c and mod2.c:

// mod1.c // mod2.c

#include "mod.h"

int y = 42;

void dec(int *p) {

(*p)--;

}

void decX(void) {

x--;

}

void decY(void) {

y--;

}

#include <stdio.h>

#include "mod.h"

int

main()

{

printf ("y = %d \n " , y);

dec(&y);

printf ("y = %d \n " , y);

printf ("x = %d \n " , x);

decX();

printf ("x = %d \n " , x);

dec(&x);

printf ("x = %d \n " , x);

}

Suppose the user compiles and links those files into an executable What will the resulting program
output?

12

	Operating System Concepts (20 pts)
	Basic OS Ideas (10 pts)
	On Process States and Scheduling (10 pts)

	Unix Processes and IPC (23 pts)
	Of Pipes and Tees (8 pts)
	What Did the User Type? (15 pts)

	Multithreading (38 pts)
	What Abstraction is it Anyway? (14 pts)
	Data Race or Not (8 pts)
	How Not To Use Condition Variables (3 pts)
	Semaphore Puzzle (8 pts)
	Breaking Up Locks (5 pts)

	Development and Linking (19 pts)
	Compilation, Linking, and Symbol Tables (13 pts)
	Linking and Scope (6 pts)

