CS 3214 Fall 2023 Final Exam Solutions

December 13, 2023

1 Networking (35 pts)

1.1

Know Your Internet (10 pts)

Determine if the following statements related to networking are true or false.

(a)

(b)

Routing protocols are distributed protocols whose goal is to populate each participating router’s
forwarding table.

W true / O false.

Internet core routers must track TCP connections (connection establishment and teardown) in order
to know when associated resources can be released.

O true / M false.

Wide Area Networks (WAN) have higher transmission delay than Local Area Networks, but the
propagation delay is generally smaller.

O true / M false.

Both IPv4 and IPv6 addresses are grouped based on shared prefixes of their bitwise representations.
W true / O false.
Internet Service Providers are required to budget for enough upstream bandwidth such that all

customers can make full use of the available bandwidth of the “last leg” link connecting them to
their ISP.

O true / [false.

Transport layer protocols such as TCP or UDP include a container identifier to identify to which
container incoming packets should be delivered.

O true / [false.

As an Internet link approaches saturation, the latency of packets sent across this link will increase.
W true / O false.

When multiple TCP connections traverse across the same link in a network and if that link becomes
saturated, the connections will obtain a roughly equal amount of bandwidth.

W true / O false.

Multiple established TCP connections can be multiplexed over the same socket.
O true / [false.

Because of the difference in their transport layer representation, HTTP/2 connections cannot be
proxied across HT'TP reverse proxies unless the origin server also supports at least HT'TP /2.

O true / [false.

CS 3214 Final Exam Solutions Fall 2023

1.2 Visiting a Webpage (25 pts)
(a) Fill in the blanks.

When a user types a URL into their browser’s address bar, the browser must first resolve the hostname
or domain name to an IP address before it can create a transport layer connection to the server. It uses
a protocol called DNS (Domain Name Service) for the resolution step, and then it uses a transport
layer protocol called TCP to create a connection. Creating such a connection requires the exchange
of 2 packets, adding roughly one roundtrip time (RTT) of delay before the first bit of information
can be sent.

The browser will send a HT'TP message, which consists of a start line, an optional set of headers
followed by a blank line and an optional body. In the case being considered (a user typing into the
address bar), the start line will contain the HTTP verb GET.

Once the server receives the request, it will parse it to extract the verb, which is followed by the
path and the HT'TP version. It retrieves the object requested from the file system or a database and
prepares an HTTP response which includes a 3-digit status code, an optional set of headers and a
body with the actual object. The size of the object is described by the Content-Length header. The
server should also specify the type of the content being sent, which for most websites is HTML (or
text/html).

Once the client receives the object, it will parse it and will now learn which other assets are needed
before the page can be displayed to the user. Such assets may include Javascript files, stylesheets, or
image files, to name 3 examples.

Before retrieving a needed asset, the browser will check in its cache to see if the object was already
retrieved before. If not, and if the asset is provided by the same server as the webpage, the client can
request it via the already established connection if the server supports an HTTP/1.1 feature called
persistent connections.

The server may also send code to the client which is written in the Javascript language. Such code,
when run, can make requests to the server. The server will respond to those requests by sending
objects represented as, for instance, JSON (or XML or HTML). (1 example suffices.)

Recent browsers/servers may use HTTP/3, which uses the transport layer protocol QUIC, which
runs on top of UDP and implements its own connection management and congestion control (Give 2
examples).

2 Virtual Memory (33 pts)

2.1 Fill in the Blanks (13 pts)

In modern computer systems, the memory system uses virtual addresses which are translated to physical
addresses. Memory is divided into equal-sized ranges called pages which on the x86 architecture are
typically 4KB large.

This translation process is performed by the memory management unit (MMU), which uses a data
structure called a page table to that end. The content of this data structure is controlled by the OS (or
kernel). Once a translation from this data structure has been retrieved, it is stored in the TLB (Translation
Lookaside Buffer) for fast access should the same translation need to be performed again.

If there is a data access but no matching translation was entered into the data structure, a page fault
is said to occur. When that happens, the OS will be entered and it may take one of two actions: first,
it may terminate the (offending) process. Or, it may allocate physical memory and provide the expected
data to facilitate access. The second case is commonly referred to as on-demand paging (or lazy loading,
or page-in). Examples of a process’s memory areas that are subject to this mechanism include heap

10

11

12

CS 3214 Final Exam Solutions Fall 2023

memory, mmap’d files, shared libraries, stack, text segment, data segment, or bss segment. (Needed only
3 examples.)

The OS also has the ability to rededicate physical memory for different uses. To that end, it uses a
page replacement (or just replacement) policy to decide which memory should be rededicated when needed.
Overall, virtual memory is a mechanism that is nearly entirely transparent (or invisible) to users, except
for a slight impact on performance.

2.2 Classifying ELF files (6 pts)

In exercise 4, you studied how to use mmap to extract information from files using the executable and

linking format (ELF). In this problem you are asked to complete a program that detects whether a given

file appears to be an ELF file or not, and whether the format is 32 or 64 bits and its byte order/endianness.
Once completed, your elfdetector program should work like this:

$ gcc -o elfdetector elfdetector.c

$./elfdetector elfdetector

64-bit Little-Endian ELF

$ gcc -o elfdetector32 -m32 elfdetector.c
$./elfdetector elfdetector32

32-bit Little-Endian ELF

$./elfdetector elfdetector.c

not an ELF file

WikiPedia provides this documentation about the ELF header which is at the beginning of an ELF
file:

ELF header!®!
Size
(bytes)
32- | 64- | 32- | 64-
bit bit | bit | bit

Offset
Field Purpose

e _ident[EI_MAGO] through | @x7F followed by ELF (45 4c 46) in ASCIl; these four bytes

0x00 4
e _ident[EI_MAG3] constitute the magic number.

This byte is set to either 1 or 2 to signify 32- or 64-bit format,

0x04 1 e ident[EI CLASS])
- - respectively.

This byte is set to either 1 or 2 to signify little or big
0x05 1 e _ident[EI_DATA] endianness, respectively. This affects interpretation of multi-byte
fields starting with offset 0x10 .

Complete elfdetector.c:

// headers elided for brevity

int
main(int ac, char *av[])
{

int fd =

assert (fd != -1);

void *addr = mmap(NULL, 4096, PROT_READ, MAP_PRIVATE, fd, 0);
assert (addr '= MAP_FAILED);

char *elf =

13

14

15

16

17

18

19

20

21

22

23

24

25

CS

3214 Final Exam Solutions

Fall 2023

the

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

32

33

bool is64 =

bool isLittleEndian =

bool isELF =
if (isELF)
printf ("Jd-bit Js-Endian ELF\n", is64 7 64 :
isLittleEndian ? "Little” : "Big");
else
printf("not an ELF file\n");
return O;

32,

Hint: you need to complete lines 6, 12, 13, 15, and 17. For simplicity, you may assume that if the file is
an ELF file, then the EI_CLASS and EI_DATA fields will have the values 1 or 2. You may also assume that

program will be invoked with non-empty files.

#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <unistd.h>
#include <stdio.h>
#include <assert.h>

int

main(int ac, char *av[])

{
int fd = open(av[1], O_RDONLY);
assert (fd '= -1);

void *addr = mmap(NULL, 4096, PROT_READ, MAP_PRIVATE, fd, 0);

assert (addr !'= MAP_FAILED);

char *elf = addr;
bool is64 = elf[4] == 2;
bool isLittleEndian = elf[5] == 1;

bool isELF = strncmp(elf, "\z7f""ELF", 4) == 0;

if (isELF)

printf ("%d-bit Js-Endtan ELF\n", is64 7 64 :

isLittleEndian 7 "Lzttle”
else
printf("not an ELF file\n");

return O;

”B’l;g n) ;

32,

CS 3214 Final Exam Solutions Fall 2023

2.3

To Understand Recursion (6 pts)

“To understand recursion, you must first understand recursion” is a well-known self-referential joke among
computer programmers. You're trying this out on your machine and run the following program after
compiling it with the -01 switch.

int main(int ac, char *av[])

{

(a)

return main(ac, av);

(2 pts) The program crashes with a segmentation fault. You investigate the assembly code of the
program:

0000000000401106 <main>:

401106: 48 83 ec 08 sub $0x8, %rsp
40110a: e8 f7 ff ff ff callg 401106 <main>
40110f: 48 83 c4 08 add $0x8, %rsp
401113: c3 retq

The crash you observed is colloquially called a “stack overflow” - but which of the program’s instruc-
tions caused the segmentation fault and why?

The callq instruction caused the segmentation fault because it is the only instruction that
writes to memory. Each call allocates stack space, but it is callq that writes the return
address to the stack, causing the OS to expand the stack whenever a new page boundary
is reached and a page fault is caused. Eventually, the OS will hit the stack limit and refuse
to allocate memory to expand the stack further, terminating the process instead.

(2 pts) You repeat the command with the perf stat utility:

$ perf stat -e page-faults ./recursion
./recursion: Segmentation fault

Performance counter stats for './recursion':
1,068 page-faults

Based on this information, provide an estimate of the stack limit in MB that was in effect in the
environment in which you ran your program. Assume a standard x86 64-bit Linux environment as
found on our rlogin cluster. Ignore any effects caused by the program’s startup (before main()).

The stack limit was set to 4MB.

(2 pts) Stack limits help us catch programs that fail due to infinite recursion, but what is a potential
downside or risk to having a stack limit?

The problem with a stack limit is that it may terminate legitimate programs with large stack
consumption, such as programs making use of deep recursion or programs that allocate their
data in large local variables.

CS 3214 Final Exam Solutions Fall 2023

2.4 Working Sets (8 pts)

Alice and Bob (neither of whom had taken 3214) work at a hot new startup where they are tasked with
running a program that processes data. They have been asked to run the program on two machines that
are attached to the startup’s internal network. The program will pull about ~17GB of data from the
network, then perform a proprietary computation — running entirely on the CPU (no I/O, network, GPU,
etc.) — that iterates over all of the data multiple times before producing an output.

Alice’s machine is configured with

8 CPUs at 2.8GHz
32 GB RAM
512 GB disk (w/ 4 GB swap partition)

Bob’s machine is configured with

8 CPUs at 2.8GHz
16 GB RAM
512 GB disk (w/ 4 GB swap partition)

1. (2 pts) Bob didn’t think the program would run on his machine because he only has 16GB RAM
where the workload computes over ~17GB but was surprised to see it succeed when he tried the
workload. Why was the workload able to succeed despite his machine only having 16GB RAM?

Some of the data will be written to swap space, essentially increasing the amount of memory
available to the program. When the data is accessed again, it is read from swap space back
into main memory.

2. (2 pts) Alice and Bob run some measurements to compare the performance on each machine. Which
one will complete faster? Why?

Alice’s machine will complete faster because the working set fits into memory (no disk I/0O
required).

3. (4 pts) Alice and Bob notice some additional hardware around the lab including some hard drives
that have higher throughput and lower latency than the ones currently installed. Ignoring program
load time and instead concentrating on the time the proprietary computation takes to run, would
using the new hard drives increase Alice’s performance? What about Bob? Explain why.

e Alice’s performance would not increase, as the hard drive does not influence the performance.

e Bob’s performance: should increase as the “swapping overhead” will decrease (the time to write
data to/from disk
3 Dynamic Memory Management (10 pts)

Mimalloc is a memory allocator developed by researchers at Microsoft Research. It provides the standard
malloc() /free() API. In this question, let us observe some of its behavior.

(a) (2 pts) Consider this program:

int main()

1

2 {

3 void *ref = malloc(8);

4 printf("malloc(%d) -> Jp\n", 8, ref);
5 }

CS 3214 Final Exam Solutions Fall 2023

when run with mimalloc a few times, it outputs:

$./mimalloci
malloc(8) -> 0x2c6ee010018
$./mimallocil
malloc(8) -> 0x4c9ce010018
$./mimalloci
malloc(8) -> 0x5a31e010018
$./mimalloci
malloc(8) -> 0x3be5a010018

Why does this program’s output a different number each time it is run?

The system uses address space layout randomization (ASLR), a safety technique that make
certains attacks more difficult.

=

(2 pts) Now consider this program

1 int main()

2 {

3 void *ref = malloc(8); // create reference point

4 for (size_t sz = 16; sz <= 128; sz += 16) {

5 for (int n = 1; n <= 2; n++) {

6 void *p = malloc(sz);

7 printf("malloc(%d) [/d] -> OzJz\n", sz, n, p-ref);
8 }

9 }

10}

When run, it outputs this every time:

malloc(16) [1] -> 0x10018 malloc(80) [1] -> 0x60038
malloc(16) [2] -> 0x10028 malloc(80) [2] -> 0x60088
malloc(32) [1] -> 0x30048 malloc(96) [1] -> 0x70048
malloc(32) [2] -> 0x30068 malloc(96) [2] -> 0x700a8
malloc(48) [1] -> 0x40078 malloc(112) [1] -> 0x80058
malloc(48)[2] -> 0x400a8 malloc(112) [2] -> 0x800c8
malloc(64) [1] -> 0x500a8 malloc(128) [1] -> 0x90068
malloc(64) [2] -> 0x500e8 malloc(128) [2] -> 0x900e8

Note that rather printing the raw addresses, the program prints the pointer difference to the very
first allocation, which is the distance counted in bytes. We arranged the output in columns to save
space.

From this output, what can you conclude about mimalloc’s allocation policy? Which storage alloca-
tion technique(s) does mimalloc appear to be using?

It uses size classes and moreover, it uses separate memory areas (sometimes called blocks or
“pages”) for each size class. The lecture slides called this style “simple segregated storage.”

(¢) (2 pts) How much memory is lost due to internal fragmentation in the block labeled malloc (80) [1]?
Zero bytes since malloc(80) [2] starts right after it.

(d) (2 pts) Now consider a sequence of allocations and deallocations of blocks of size 256:

10

11

12

13

14

15

16

CS 3214 Final Exam Solutions Fall 2023

1 int main()

2 A

3 void *ref = malloc(8);

4 size_t sz = 256;

5 int n;

6 for (n = 1; n <= 4; n++) {

7 void *p = malloc(sz);

8 printf ("malloc(%d) [/id] -> OzJz\n", sz, n, p-ref);
9 free(p);

10 printf ("freed(0zjz) \n", p-ref);
11 }

12}

The observed output is

malloc(256) [1] -> 0x100e8
freed(0x100e8)
malloc(256) [2] -> 0x101e8
freed(0x101e8)
malloc(256) [3] -> 0x102e8
freed(0x102e8)
malloc(256) [4] -> 0x103e8
freed(0x103e8)

What can you conclude about mimalloc’s management of freed blocks?
It does not immediate reuse freed blocks.

(e) (2 pts) How would your p3 allocator’s policy be different from mimalloc’s for the last example?
Many groups’ implementations would have reused a freed block immediately for an alloca-
tion of the same size.

4 Automatic Memory Management (10 pts)

4.1 Understanding Reachability (4 pts)

Consider the following Java program:

public class Student {
static Student ofTheMonth;
private String name;
public Student(String theName) {
this.name = theName;

}

public static void main(String[] args) {

Student el = new Student("Alice");

Student e2 = new Student("Bob");

Student e3 = new Student("Carol”);

Student.ofTheMonth = el;

e2 = null;

Student students[] = {el, e2, e3};
}

CS 3214 Final Exam Solutions Fall 2023

Which of the following graphs depicts this program’s heap after executing the statements up until (and
including) line 147 Assume that no garbage collection has taken place. (Check the corresponding box.)

Static fields

Student instance

Student instance

name |e—— . Sting

Static fields

Student.ofTheMonth | ¢

Student.ofTheMonth name [o T T e "Alice"
maln:ls Student instance i) main:lS
name [e— . U9
el Bob el null
Student instance
e2 null Student instance e2 _ String
—
e3 «— e String e3 pame ‘ i "Bob"
"Carol"
students students
\ Student instance
array String
0 . 3 name | &———> ucaro1”
null | null
null
O Graph 1 O Graph 2

Static fields

Student instance

String
name e >

Student instance

——— Sting
name

Static fields

StudentofTheMonth |« _—

Student.ofTheMonth

"Alice" "Alice"
. \\\) Student instance
main:15 Student instance main:15 — String
— a M
el name |&—_ sting el Bob
"Carol"
&2 e2 |null Student instance
e3 Student instance e3 name e > ?'“C‘;grol"
students name | e—» "9 students
"Bob"
ardy
null
0 Graph 3 I Graph 4

4.2 Out Of Memory Situations (6 pts)

(a) (3 pts) During exercise 4, you were asked to write a Java program that would run out of memory.
One student made this attempt:

[

import java.util.TreeSet;

2

3 public class 00M {

4 public static void main(String [lav) {

5 for (long i = 0; ; i++) {

6 TreeSet<Long> list = new TreeSet<>();
7 list.add(new Long(i));

8 }

9 }

10

Would this program run out of memory or not? Justify your answer.

It would not run out of memory. In each iteration of the loop, a new TreeSet object is
created, but the local reference variable list pointing to it is overwritten such that the
object from the previous iteration because garbage, which the collector can free. Thus,
only the last TreeSet object is alive, which means that the live heap size does not increase.

(b) (3 pts) You are working on a large server-side enterprise application written in Java. Your DevOps
team informs you that they have to restart your application server at least once a day in order to
prevent it from running out of memory. You investigate a heap dump that they shared with you when

CS 3214 Final Exam Solutions Fall 2023

it did run out of memory, but even after close examination you cannot find any reachable objects
you could identify as leaks. What are your options now? Name and explain one.

If leaks are ruled out, the only options left are to

e Reduce bloat by using more space-efficient data structures (e.g., int instead of
Integer)

e Reduce the overall amount of memory used, for instance, by introducing caches and
bounding on their size (or reducing the amount of memory allocated to such caches).
Weak references could be used here.

e Asking for a memory upgrade

Non-answers include

e running the garbage collector more often would not help since its an increase in the live heap
size that is causing the running out of memory

e reducing churn (the allocation rate) for the same reason

5 Virtualization (12 pts)

5.1 Container Namespaces (6 pts)

In exercise 5, all students could demo their webservers by using a container. Here is the command run
inside the container (as specified in the provided Dockerfile):

CMD ./server -p 9999 -R ../svelte-app/build -a
1. (2 pts) What does the -p 9999 indicate to the server?
It indicates that the server should bind to and listen on port 9999.
2. (2 pts) What would happen if, instead of using containers, all students demoed their webservers
by directly issuing that command (./server -p 9999 -R ../svelte-app/build -a) on an rlogin
node?

These servers would encounter port conflicts (“port already in use”)

3. (2 pts) Containers take advantage of kernel support to provide namespacing for what resources that
are otherwise shared by processes on the system? (list 2)

i) network namespace (e.g., port numbers)

ii) pid namespace (separate process ids)

)

)
iii) users (separate user ids)
iv) file system/mount points
)

v) machine/domain name (uts)

10

CS 3214 Final Exam Solutions Fall 2023

5.2 Virtual Machine or Container? (6 pts)

Virtual machines and containers are two ways to package applications for the cloud.

1. (3 pts) Suppose Alice has a custom kernel module that is to be installed alongside her application
for acceleration and monitoring. Which should she choose? Why?

A VM because it has its own private OS kernel to install a module into.

2. (3 pts) Bob cares about how quickly his application can be started in response to an event. Which
should he choose? Why?

A container to save the overhead of starting a VM and booting the guest kernel in it.

11

	Networking (35 pts)
	Know Your Internet (10 pts)
	Visiting a Webpage (25 pts)

	Virtual Memory (33 pts)
	Fill in the Blanks (13 pts)
	Classifying ELF files (6 pts)
	To Understand Recursion (6 pts)
	Working Sets (8 pts)

	Dynamic Memory Management (10 pts)
	Automatic Memory Management (10 pts)
	Understanding Reachability (4 pts)
	Out Of Memory Situations (6 pts)

	Virtualization (12 pts)
	Container Namespaces (6 pts)
	Virtual Machine or Container? (6 pts)

