
CS 3214 P3:
Memory allocator

Thursday, Nov 2th, 2023 @ 7:00 PM

Based on slides by Abhishek Sathiabalan

Topics Overview of Memory Management

Intro to P3
• How to Start Malloc

Project Structure

Debugging & Performance Tools

Logistics
• Grading
• Testing Framework

Overview of Memory
Management

The Heap
• Persistent, unmanaged memory granted to

processes
• Memory leak

• Hold onto memory for too long
• Memory Corruption

• Free memory too early
• Sometimes memory allocation strategies are

coupled with garbage collectors
• Managed by the malloc() family in stdlib

The
Goal • Hoard

• Google’s TCMalloc
• Glibc

Lots of allocators are available

• Time
• Instantly access an available block

• Space
• Find a block that fits exactly

Resource tradeoff

https://people.cs.umass.edu/~emery/pubs/berger-asplos2000.pdf
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://sourceware.org/glibc/wiki/MallocInternals

Intro to P3

Getting
Started

Fork the repo
•https://git.cs.vt.edu/cs3214-staff/malloclab
•Set to private
•You WILL be graded on git usage

Fork

Review the sample implementation
•mm-gback-implicit.c
•Take a close look at design decisions and function preconditions
•Be mindful of conversions between word and bytes

Review

Create and write mm.cCreate

Provided
Functions

void* mem_sbrk(int incr);
• Extend the heap by incr bytes and return the start address1

void* mem_heap_lo(void);
• Return the start address of the heap2

void* mem_heap_hi(void);
• Return the end address of the heap3

size_t mem_heapsize(void);
• Return the current size of the heap4

size_t mem_pagesize(void);
• Return the system’s page size in bytes5

Client-Side
Functions • Int Mm_init(void);

• Void* Mm_malloc(size_t size);
• Void Mm_free(void*ptr);
• Void* mm_realloc(void* ptr, size_t size);

Build off the implicit implementation from Dr. Back

• find_fit()
• place()
• coalesce()

Any helper methods you find suitable

You must be able to handle a wide variety of sizes

Suggestions &
Project Designs

Suggestions Consider performance implications from the start
•Do extra structs/fields require more memory?
•What edge conditions are important?
•Avoid high time complexity operations whenever possible!

Performance

Use assert statements liberally
•Ensure alignment
•Test for pre- and post-conditions often
•Figure out where the bug occurs, rather than a side effect
•You will need at least 5 assert statements in your design

Asserts

Start early and Implement in stages
•Play with different designs

Timeline

Link to lecture slides:
https://docs.google.com/presentation/d/1IC6Kghz-y2OMlzZrI8HRJU4RoDgMr6n7c0lG5tSIpWs/edit#slide=id.g120f7216323_2
_722

https://docs.google.com/presentation/d/1IC6Kghz-y2OMlzZrI8HRJU4RoDgMr6n7c0lG5tSIpWs/edit#slide=id.g120f7216323_2_722
https://docs.google.com/presentation/d/1IC6Kghz-y2OMlzZrI8HRJU4RoDgMr6n7c0lG5tSIpWs/edit#slide=id.g120f7216323_2_722

Alignment

4

As a side note, when you add pointers remember rlogin is a 64-bit system and thus the pointers are 8 bytes
in length.

Splitting

Coalescing

Segregated Free Lists

Debugging &
Performance Tools

Debugging mm_checkheap()
• Internal mechanism to check

the integrity of the heap
through linear iteration

• You will have to implement
this to fit your design

GDB
• Check the actual values of

variables

Performance
Tools
• gprof

• Tool that counts function calls and exec time, creating
gmon.out

• Requires –pg flag
• Remove this flag during performance testing

• Check output using
• gprof mdriver gmon.out >
prof_output

• perf
• Same thing basically, but without –pg flag
• Called with perf record then perf report

Debugging Demo

Project Logistics

Logistics
• Test using the driver locally before submitting

Submit code that compiles

• Tests will be run 3-5 times, taking the average
• If a single failure occurs, you get a 0
• Components

• Correctness (40%)
• Performance (40%)

• Throughput
• Space Utilization

• Design/Documentation/Git (20%)
• At least 5 assert statements

Grading

Driver • ./mdriver
• Flags
• –v for verbose
• -V for MORE verbose
• -f to customize traces
• -s to vary allocation size

• -h for these (and more) flags

Performance
• Number of requests per second

Throughput

• How much space the heap has
been expanded by versus the
space user data takes

• Overhead
• Fragmentation

Utilization

Test Trace
Files

• Located in
/home/courses/cs3214/malloclab/traces

// Heap size

 // Unique identifiers

 // Number of operations

 // Weight of trace

3000000

2847

5694

1

a 0 2040

f 0

Reference [L-MEM1] Dynamic Memory
Management (malloc/free)

Implicit vs Explicit

Fragmentation

Coalescing Policies

https://courses.cs.vt.edu/cs3214/videos/Lecture-MemoryAllocation.pdf
https://courses.cs.vt.edu/cs3214/videos/Lecture-MemoryAllocation.pdf

Questions?
Thank you for attending!

