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The Case for Application-Level Concurrency

General purpose OS already provide the ability to execute processes concurrently. In
many applications, we would like to pursue multiple, concurrent computations
simultaneously within a process, e.g.

Parallel Computing: perform multiple tasks or work on shares of data
simultaneously

Overlap I/O & Computation: checksum and repair while downloading in a file
sharing program

Serve a UI while performing background activity (spell check, contact server or
backend for autosuggestions)

Handling multiple clients simultaneously in a network server

Such application-level concurrency is supported by having multiple
threads of execution.
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Threads vs Processes

Processes provide concurrent, separate logical flows of control within a
system/machine

Threads provide separate logical flows of control within a process
share do not share

Processes
machine resources, files on
disk, inherited file descriptors,
terminals

address space

Threads
address space1, open file de-
scriptors

stack2 & registers

Think of threads as multiple programs executing concurrently within a shared
process, sharing all data and resources, but maintaining separate stacks and
execution state.

1heap objects, all global variables
2local variables, function arguments, thread-local variables
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Implementing Threads

Question
Does the ability to maintain multiple flows of control require support from the
underlying OS kernel?

Or...
Can it be implemented purely using libraries, etc. using the non-privileged
instructions and other facilities available at user level?
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Cooperative Multi-Threading

It’s possible to maintain multiple control flows entirely without kernel level
support

Exists in multiple variants in different languages, known as coroutines or
user-level threads depending on variant

Requires a primitive that saves & restores execution state

Non-preemptive model: threads’ access to the CPU is not preempted (taken
away) unless the thread yields access to the CPU voluntarily

Yield may be directed (saying which coroutine should run next) or undirected
(run something else next), e.g. uthreads example

In some higher-level languages, functions can “yield” temporary results as their
execution state is saved and restored (e.g., Python or ES6 yield)

Can be combined with asynchronous I/O: yield a promise object that represents
an in-progress operation: async/await
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Cooperative Multi-Threading

Advantages

Requires no OS support

Very lightweight and fast context
switching

Absence of certain data races, e.g.
x++ is atomic

Can yield scalable designs when
combined with asynchronous I/O

Disadvantages

Cannot make use of multiple CPUs

Cannot preempt long-running or
uncooperative threads easily

Blocking I/O system calls will block
all threads/entire process
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Kernel-supported Threads

If the OS kernel supports threads directly, the above-mentioned problems can be
solved

Parallelism (using multiple CPUs/cores simultaneously) is possible because OS
can assign threads to different CPUs, which enables speedup

When performing I/O, the OS will move only the calling thread into the
BLOCKED state

The OS’s preemptive scheduling model can share access to a CPU even if
threads do not yield the CPU by (forcefully) interrupting threads and moving
them to the READY state

Kernel-supported Threads

Dominant model today, supported by all major OS. Aka as kernel-level (as opposed
to user-level) threading, but not to be confused with pure (inside the) kernel threads.
Sometimes also called lightweight processes (LWP).
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Hybrid Models

Figure 1: 1:1 model Figure 2: 1:N model Figure 3: M:N model
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Hybrid Models (cont’d)

Pure user-level threading uses a 1:N model (N user-level threads share 1 OS-level
thread)

Pure kernel-level threading uses a 1:1 model (1 OS thread for each user thread)

Hybrids (M:N) models try to obtain the best of user-level and kernel-supported
threads.

Examples: Windows Fibers, (now defunct) Solaris M:N model

Increase in complexity (and lack of payoff) led to the M:N model being largely
abandoned.

Heavy investment/optimization in reducing the costs of the 1:1 model, e.g. fast
user-level synchronization facilities
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POSIX Threads “pthreads”

Execution model and API

de facto standard for Unix-like OS, specified in IEEE Std.1003.10-2017

retrofitted into overall POSIX standard as an extension, defining interaction
between traditional process-based facilities and threads, e.g. signals

many languages provide direct bindings for it - e.g., Java threads, C++ async,
etc.
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POSIX Threads Example

Create and Join

struct thread_info {

const char * msg;

};

static void *

thread_function(void *_arg)

{

struct thread_info *info = _arg;

printf("Thread 1 runs, "

"msg was `%s'\n",

info->msg);

return (void *) 42;

}

int

main()

{

struct thread_info info = {

.msg = "Hello, Thread" };

pthread_t t;

pthread_create(&t, NULL,

thread_function,

&info);

uintptr_t status;

pthread_join(t, (void **) &status);

printf("Status %lu\n", status);

return 0;

}
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Java Threads Example

Create and Join

public class JavaThread

{

static class Example

implements Runnable

{

String msg;

int result;

Example(String msg) {

this.msg = msg;

}

@Override

public void run() {

System.out.println(msg);

result = 42;

}

}

public static

void main(String []av)

throws Exception

{

var ex =

new Example("Hello Thread");

Thread t = new Thread(ex);

t.start();

t.join();

System.out.println(ex.result);

}

}

Godmar Back Introduction to Multithreading 12/16 12 / 16



Concurrency Management

Applications rarely create separate, new threads for individual tasks, particularly
if small

Instead, they manage the number of threads needed to perform work and
distribute work to threads

Trade-off:
Too many threads: leads to increased contention for resources and resulting overhead from
managing that
Too few threads: risks underutilization of CPUs/cores

Target: number of READY + RUNNING threads around equal to number of
cores

Solution: thread pools [1]
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Java’s ExecutorService Example

import java.util.concurrent.*;

public class FixedThreadPool

{ static final int N = 8;

public static void main(String []av) throws Exception {

ExecutorService ex = Executors.newFixedThreadPool(3);

Future<?> f[] = new Future<?>[N];

for (int i = 0; i < N; i++) {

final int j = i;

f[i] = ex.submit(new Callable<String>() {

public String call() {

return "Future #" + j + " brought to you by "

+ Thread.currentThread();

}

});

}

for (int i = 0; i < N; i++)

System.out.println(f[i].get());

ex.shutdown();

}

}
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Parallel Divide-and-Conquer Example

Pseudocode Source: Lea [1]
Result solve(Param problem) {

if (problem.size <= GRANULARITY_THRESHOLD) {

return directlySolve(problem);

} else {

in-parallel {

Result l = solve(lefthalf(problem));

Result r = solve(rightHalf(problem);

}

return combine(l, r);

}

}

Challenge
An execution framework must map the tasks created in in-parallel to threads.

Godmar Back Introduction to Multithreading 15/16 15 / 16



References

[1] Doug Lea.
A java fork/join framework.
In Proceedings of the ACM 2000 conference on Java Grande, pages 36–43, 2000.

Godmar Back Introduction to Multithreading 16/16 16 / 16


