
CS 3214: Project 2 Help Session

Fork-Join Threadpool
Tuesday October 10th, 2023; 7:30pm - 9:00pm EST

Veda Hegde vedamhegde@vt.edu
Vineet Marri vmarri25@vt.edu

mailto:vedamhegde@vt.edu
mailto:vmarri25@vt.edu

Topics

● Getting Started and Basics
● Threadpool Design
● Codebase Intro
● Logistics

○ Grading
○ Test Driver
○ Scoreboard

● Debugging
● Advice
● Questions

Getting Started
and Basics

1. One member will fork the base repository:
https://git.cs.vt.edu/cs3214-staff/threadlab

2. Invite partner to collaborate
- Go to Settings > Members to add them
- Check partner role permissions too

3. Both members will clone the forked
repository on their machines:

IMPORTANT
:4. Set forked repository to private

- Go to Settings > General > Visibility, project features, permissions
- Potential Honor Code Violation if not set to private

First Step!

$ git clone <your git repo url>.git

*Your forked repository will have a
navigation menu on the left side.
Click under Settings to add members
and set repo to private

threadlab

https://git.cs.vt.edu/cs3214-staff/threadlab

The Basics
● What is a thread?

○ A single sequential flow within a program
○ A single process can have multiple threads

● What is a threadpool?
○ Collection of threads that can complete a task for you
○ As a client you can use the threadpool API to complete your

tasks
○ Less-headache way to add concurrency to programs

Basic Illustration

Source: https://www.classes.cs.uchicago.edu/archive/2016/spring/12300-1/pa3.html

https://www.classes.cs.uchicago.edu/archive/2016/spring/12300-1/pa3.html

Where you come in...
● You will create your own Threadpool API that external programs will call

● What do we write?

threadpool.c1.

2. Implementations for functions and structs from

3. Static helper functions as needed

threadpool.h

Functions you will implement
struct thread_pool * thread_pool_new(int nthreads);

void thread_pool_shutdown_and_destroy(struct thread_pool *);

struct future * thread_pool_submit(struct thread_pool *pool, fork_join_task_t task, void * data)

void * future_get(struct future *);

void future_free(struct future *)

● Read over threadpool.h for full documentation: you must implement these functions!

● Not included are static function(s) you’ll add to threadpool.c

Threadpool Design

Threadpool Design
● Methodologies (key ideas)

○ Split up tasks among n workers

○ Work Sharing / Work Stealing

○ Work Helping

● No global variables! (exception of thread-local variables - we will talk
about these later)

Work Sharing
● Single, central queue from which all threads remove tasks

● Drawback: queue can become a point of contention especially with
handling small tasks

Work Stealing

● Global list of tasks
● Local list of tasks per worker
● Each worker checks the following in the worker main loop:

○ Do I have tasks? Pop from front (LIFO)

○ Are there global tasks? Pop from back (FIFO)

○ Does anyone else have tasks? Pop from back (FIFO)

Work Stealing (cont.)

How is it better?

● Stealing spreads work evenly to idle threads

Note:
● Each queue/dequeue needs to be protected
● Workers still wait for other threads to steal and finish futures they

depend on (we’ll get back to this)

Work Helping
● In future_get, you can only return the result once the future is done

executing
● The task might not be completed when future_get is called (or

even running)
● Consider cases for getting the result from future_get:

○ If future already executed -> Hurray!

○ But what happens if the future isn’t ready?
■ What should the thread do while waiting?

Task

Task

Work Helping (cont.)
● If not started:

○ Do it yourself
● If already started:

○ Help out by popping tasks of the worker already executing the
future

Design Advice
● We recommend implementing the work stealing with work helping

thread pool design
○ Better load balancing
○ Lower synchronization requirements

● However, you can implement work sharing for only 80% credit (not
recommended)

External vs
Internal Task
Submissions

Internal vs External Task Submissions
● External Submission - client submits a new task to threadpool

○ Task gets added to the global queue

● Internal Submission - thread submits a subtask

○ “Subtask” gets added to worker’s local deque

- Worker executes it later

- Or a co-worker steals the task to execute itself

● For submissions to the threadpool, you’ll need to distinguish these
cases for adding to the right queue

○ But how?

Thread Local Variables
● Want to be able to access your workers deque (and probably locks)

during thread_pool_submit()for example

● How can we distinguish external/internal submissions?

Thread Local Variables
● Naive approach would be to loop through workers and check

pthread_self(),...
● Instead, use some variable which would be different for each thread

○ AKA thread-local variables/storage

https://en.wikipedia.org/wiki/Thread-local_storage#C_and_C.2B.2B

External
mergesort_parallel(int *array, int N) {

int * tmp = malloc(sizeof(int) * (N));

struct msort_task root = {

.left = 0, .right = N-1, .array = array, .tmp = tmp

};

struct thread_pool * threadpool = thread_pool_new(nthreads);

//EXTERNAL submission from client

struct future * top = thread_pool_submit(threadpool, //internal function
(fork_join_task_t) mergesort_internal_parallel,

&root);

//demands answer once it’s ready

future_get(top);

future_free(top);

thread_pool_shutdown_and_destroy(threadpool);

free (tmp);

}

* Check out mergesort.c to see full functions

Internal
static void

mergesort_internal_parallel(struct thread_pool * threadpool, struct msort_task * s)

{ //If array small, no more submitting just internal sort (BASE CASE)

if (right - left <= min_task_size) { mergesort_internal(array, tmp+left, left, right); }

... not all code shown

//INTERNAL Submission from the worker thread
struct future * lhalf = thread_pool_submit(threadpool, (fork_join_task_t) mergesort_internal_parallel,

&mleft);

//Worker thread works on other half

mergesort_internal_parallel(threadpool, &mright);

future_get(lhalf);

future_free(lhalf);

merge(array, tmp, left, left, m, right);

}

}

Mergesort

sort(A[0..64])

sort(A[0..32])

sort(A[0..16]) sort(A[16..32]) sort(A[32..48]) sort(A[48..64])

sort(A[32..64])

Implementation Tips

struct thread_pool
● Should contain any state you need for a threadpool
● Ideas:

○ Locks (pthread_mutex_t)
■ To protect the global queue

○ Queues/Deques (provided list struct from previous
project)

○ Semaphores (sem_t)
○ Conditional Variables (pthread_cond_t)
○ Shutdown flag
○ List of workers associated with this thread_pool
○ etc.

Worker struct

● Should contain a worker struct as well
● Ideas:

a. Maintain which pool this worker is for
b. Queue of all the tasks
c. Lock for the worker queue
d. etc.

Futures
● How do we represent a task we need to do?

○ future

○ Threadpool: an instance of a task that you must execute

○ Client: a promise we will give them a reply when they ask for it

struct future

{
fork_join_task_t task; // typedef of a function pointer type that you will execute

void* args;// the data from thread_pool_submit

void* result; // will store task result once it completes execution

…

// may also need synchronization primitives (mutexes, semaphores, etc)

};

Futures (cont.)
● You will invoke “task” as a method, it represents the method passed

through by thread_pool_submit, the return value gets stored into
the result

Future Illustration

Task

Task

Task

KEY:

1. Client submits task
to threadpool’s
global queue

2. Client immediately
receives a future

3. A worker thread
snags the submitted
task to their local
deque for work

4. Client demands to
get the completed
task affiliated with
future

5. The completed task
is returned, client
frees the future

1.

2.

3.

4.

5.

thread_pool_new()
● Create thread pool
● Initialize worker threads
● Call pthread_create: starts a new thread in the calling process. The new

thread starts execution by invoking start_routine(); arg is passed as the
argument of start_routine()

Thread function

● Passed into pthread_create()
● This is where each thread will start its execution
● Strategy

○ Check the global queue
○ Work steal
○ Wait on pool’s condition variable

Logistics

Grading
● When grading, tests will be run 3-5 times, if you crash a single time

it’s considered failing
● Benchmarked times will be the average of the 3-5 runs, assuming

you pass all of them

Grading (cont.)
● Breakdown

○ Git Usage
○ Functionality Tests (Basic/Advanced ~ 25% each)
○ Performance ~ 40%

● You must pass the basic tests before getting anything for performance

Performance
● Relative to peers and sample implementations
● Points only for the tests on the scoreboard

○ N Queens, Mergesort, Quicksort (8, 16, and 32 threads),
possibly Fibonacci

● A rough cutoff for real time benchmarks will be posted later on by
Dr. Back (last semester’s scoreboard)

https://courses.cs.vt.edu/cs3214/fall2022/projects/project2scoreboard

Performance

ONLY for reference - numbers will likely change

Improving Performance
● Make sure you aren’t on a busy rlogin node!

○ ssh <username>@portal.cs.vt.edu

● Minimize sleeping/waiting, maximize execution of tasks

● Advanced Optimizations - CPU Pinning, Fixing False Sharing, Lockless
Queues, Randomized work stealing etc
(https://courses.cs.vt.edu/cs3214/spring2023/projects/project2perfhints)

● CPU profiling using htop

● Ask on Discourse! There’s a lot of other optimizations to try

https://courses.cs.vt.edu/cs3214/spring2023/projects/project2perfhints

Scoreboard

● https://courses.cs.vt.edu/cs3214/fall2023/projects/project2scoreboard
● You can post your results to the scoreboard by using the fjpostresults.py

script

https://courses.cs.vt.edu/cs3214/fall2023/projects/project2scoreboard

Visual Studio Code Terminal Issues

● Use a separate terminal (like git bash) to run the tests
● VS Code spins up some extra processes on rlogin to manage files,

they interfere with the somewhat strict thread limits we enforce on the
tests to guarantee your thread pool isn't creating additional workers to
juice performance numbers

Performance

Test Driver

● Can take a long time to run all tests
● Reports if you passed each test, and times for the benchmarked ones

$ ~cs3214/bin/fjdriver.py [options]

Test Driver

● Make sure to run tests multiple times, race conditions can cause you to
crash only 20% of the time

● Will run multiple times to ensure consistency when grading (and get a
good average for times)

● All of the tests are C programs, compiled against your threadpool

Test Driver

● Runs the tests 5 times and averages the results
● Helpful to simulate grading environment

$ ~cs3214/bin/fjdriver.py -g -B 5

Debugging
Tools

Debugging

● Debugging multi-threaded programs can be difficult
○ Don’t just use printf()

● This project will challenge you in your debugging skills (GDB, Helgrind..)
● Helgrind**

○ Valgrind tool
○ Enable using --tool=helgrind in Valgrind command line
○ Your best friend for tracing deadlocks and synchronization errors
○ https://www.valgrind.org/docs/manual/hg-manual.html/

https://www.valgrind.org/docs/manual/hg-manual.html/

GDB Demo

● info thread - see how many threads there are

● thread <thread_num> - switch current thread

● thread apply all bt - see what each thread is
doing

● Checking who owns a lock

General Advice

● Start Early (...now)
● How many lines of code?

○ ~250-350 lines (not a good benchmark for difficulty)
● Most of time is spent debugging

○ GDB, Helgrind, and Valgrind are your friends
○ Debugging multi-threaded programs is difficult and time consuming

● Try different strategies
○ Most of the learning is trying out different approaches - telling you

exactly what would give the best results would reduce the
educational experience

Any Questions?

Good Luck!

