
CS3214 Fall 2023 Exercise 0

Due Date: see website

In this class, you are required to have familiarity with Unix commands and Unix pro-
gramming environments. The first part of this exercise is a review related to making sure
you are comfortable in our Unix environment. The second part relates to the use of basic
command line and standard I/O facilities from an application’s developer perspective.
The third part focuses on the difference between byte and character streams, which is an
important and often confusing topic of high practical relevance.

1 Using Linux

It is crucial that everybody become productive using a Unix command line, even if the
computer you are using daily is a Windows machine. Working on the command line
requires working knowledge of a shell such as bash, fish, or zsh, but it also requires an
understanding of the most common system commands and how the shell interacts with
these commands and with user programs.

• Remote Terminal Access. Make sure your personal machine has an ssh client pro-
gram installed. Set your machine up for public key authentication when logging
on to rlogin.cs.vt.edu. The exact way to do this will depend on your personal
computing environment; on Unix, you would use ssh-keygen to create a key, e.g.,
ssh-keygen -t ed25519.

There is also an web interface provided by the department that allows you to create
a key pair at https://admin.cs.vt.edu/my-ssh-keys/. In this case, Tech-
staff will create a private key for you, and thus you will not be able to maintain
continuous possession of the private key from its inception. Remember that your
private key represents you, and anyone who can access it can impersonate you as
far as accounts go where you have placed the matching public key. This means you
should use this key pair only for your SLO/CS account and nowhere else.

At the end of this step, you should be able to ssh into rlogin without having to type
a password from your personal computing device.

• Command-line Editing. Make sure you know how to use the command line editing
facilities of your shell. For bash users, which most of you are by default, examine the
effect of the following keys when editing: d̂, TAB, â, ê, r̂, k̂, and ŵ. Then memorize
these keystrokes, making them part of your finger memory.

Examine the effect of the following keys when you invoke a program: ĉ, ŝ, q̂ (̂x
stands for Ctrl-x.)

• Shell Customization. Customize your shell and create a custom prompt and any
aliases you may need. A custom prompt typically includes the name of the machine
you’re on and at least part of the pathname of the shell’s current directory as when
setting PS1 to [\u@\h \W]\$

1

https://admin.cs.vt.edu/my-ssh-keys/

CS3214 Fall 2023 Exercise 0

• Terminal Editors. Make sure you know how to use at least one command line edi-
tor, such as vim, nano, pico, or emacs. We recommend vim, an editor that according
to some MIT instructors “can match the speed at which you think.”

• Visual Studio Code. Many students set up a remote environment that allows them
to use an IDE on their computer. Notably, Microsoft’s Visual Studio Code provides
an extension that provides a remote environment within the IDE that is well inte-
grated. Although not mandatory, we highly recommend that you do this as well.
The TAs will share instructions on how to do that.

We will skip a quiz on this topic this semester, but we do ask that everyone who is not
comfortable with their setup that allows them to use rlogin remotely work with teaching
staff.

A frequent point of friction is students forgetting to add ~cs3214/bin to their PATH. To
check that you’ve done this correctly, type:

$ am I set up for CS3214?

It should say that you are.

Submit a screenshot that shows your customized prompt and the output of this com-
mand. To be considered set up correctly, your must first find the am command and your
environment second must pass the checks this script does.

2 Understanding Command Line Arguments and Standard
I/O in Unix

In the past, we observed that some students coming into CS 3214 did not understand
how programs access their command line arguments and how they make use of the stan-
dard input/output facilities, which present one of the basic abstractions provided by an
operating system. For instance, some students came with the mistaken impression that
“standard input” and “standard output” always represent input or output from/to some
kind of “console.”

2

https://missing.csail.mit.edu/2020/editors/

CS3214 Fall 2023 Exercise 0

Application Side Note. Deep knowledge of Unix is an absolute prerequisite for any-
one wanting to learn or work with containers. As an example, consider this excerpt
[link] of a script used to set up the container in which this semester’s Discourse server
runs:
run_image=‘cat $config_file | $docker_path run $user_args \

--rm -i -a stdin -a stdout $image ruby -e \
"require ’yaml’; puts YAML.load(STDIN.readlines.join)[’run_image’]"‘

This command sets a variable run_image to contain the data produced by the stan-
dard output stream that results from running the pipeline that is enclosed in back-
quotes. This pipeline consists of 2 commands: the command cat, which is given
1 argument (taken from the value of $config_file) and whose standard out-
put is “piped” into the command given by the $docker_path variable (probably
docker), which is invoked with 12 arguments, the last one being a Ruby program
that will be run inside the container, but which can access as its standard input
(STDIN) the data written to cat’s standard output. Being able to understand what
commands like this one do is a motivation for this exercise (and hopefully, the fol-
lowing exercise and project will provide an even deeper understanding).

To practice this knowledge, write a C program that concatenates a combination of given
files and/or its standard input stream to its standard output stream. The exact specifica-
tion is as follows.

Your program should be called concatenate.c.

When compiled and invoked without arguments, it should copy the content of its stan-
dard input stream to its standard output stream. “Standard input” and “standard output”
are standard streams that are set up by a control program that starts your program (often,
the control program is a shell).

When invoked with arguments, it should process the arguments in order. Each argument
should be treated as the name of a file. These files should be opened and their content
should be written to the standard output stream, in the order in which they are listed on
the command line. The arguments - (a single hyphen) must be treated differently. If it is
encountered the program should read and output the content of its standard input stream
instead in this place. You may assume that at most one - is provided.

If any of the files whose names are given on the command line do not exist, the program’s
behavior is undefined. Being “undefined” is a fancy way of saying that your program
does not need to implement any checks or remedies for user errors such as specifying
non-existing files for the purposes of this small exercise.

Just because programs can interact with their standard input stream in a way that ab-
stracts away the concrete nature of the input stream does not mean that it is impossible
to figure out what kind of stream it is. In addition to copying the contents of its standard
input stream and/or provided files, your program should also output the type of each
stream that it is processing, in order. This information should be sent to the standard
error stream. When processing a file listed on the command line, it should output the
provided name, followed by one of the following

3

https://github.com/discourse/discourse_docker/blob/990519e2373ec32055a7742a407e81f4bd606ed4/launcher#L498-L499
https://en.wikipedia.org/wiki/Standard_streams

CS3214 Fall 2023 Exercise 0

• is a regular file if the stream refers to a regular file

• is a pipe if the stream refers to a pipe

• is a character device if the stream refers to a character device

• is something else otherwise.

Examples are shown below:

$./concatenate
standard input is a character device
abc <- I typed this
abc <- your program would output this
^D <- I typed this, it won’t appear on the terminal
$./concatenate < concatenate.c | wc
standard input is a regular file

37 118 957
$ cat concatenate.c | ./concatenate | wc
standard input is a pipe

37 118 957

As you can see, my C implementation is only 37 lines.

Your C program may make use of C’s stdio library (e.g., the family of functions including
fgetc, etc.)1, or it may use system calls such as read() or write() directly. You should
buffer data to avoid frequent system calls, but you may not assume that it is possible to
buffer the entire file content in memory all at once.

Implementation Requirement: to make sure you understand the uniformity provided
by the POSIX C API, we require that your program define a function, and then use this
function to copy the data contained in files as well as the data it reads from its standard
input stream. Your program’s main() function will then call this single function multiple
times, as needed. In other words, do not special case standard input/output by provid-
ing a separate code path for standard input/output that makes use of facilities such as
getchar() that implicitly refer to the standard input stream. Your code should be DRY.
This same function should make use of the fstat(2) system call (man page) to figure
out what kind of file it is. Hint: use the st_mode field.

You may use the script test-concat.sh to test your code.

1cppreference.com has a full list at https://en.cppreference.com/w/c/header. Note that some particu-
larly unsafe string functions are banned in CS3214.

4

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://man7.org/linux/man-pages/man2/lstat.2.html
https://en.cppreference.com/w/c/header

CS3214 Fall 2023 Exercise 0

3 Understanding how to access the Standard Input and Out-
put Streams in your Preferred Language

Standard input and output are not concepts that are specific to the use of C. Choose a
language of your choice that is not C (e.g. C++, Go, Ruby, Rust, Java, Python 3, JavaScript,
etc. etc.) and implement the above concatenate program in this language.2 You may use
all functions that are part of the language’s standard library, but not functionality that
requires the installation of extra libraries.3

If your language cannot be compiled into an executable, and also cannot be executed
directly by an interpreter using the Shebang/Hash-bang convention, you will need to
create a wrapper script so you can test it.4 This wrapper script is required for Java, it
should invoke your program, passing any command line arguments it receives to it.

As described in the Bash Hacker’s Wiki you can use the "$@" shorthand to refer to the
script’s arguments, which are passed onto the Java program:

#!/bin/sh
save this file as wrap-java.sh

java -Xmx120m Concatenate "$@"

Side Note. Some of you may never have invoked a Java program on the command
line. It is done by compiling the Java code using javac Concatenate.java fol-
lowed by java Concatenate ... to start the compiled program, where ...
stands for the arguments being passed to it. Recent JDK versions permit the combi-
nation of these steps by supporting the invocation java Concatenate.java ...,
essentially accommodating what used to be the frequent beginner’s mistake of ask-
ing the JVM to run not-yet-compiled source code.

You should use test-concat.sh to test by passing the name of your script or exe-
cutable as an argument.

Java is an exception here: although the JVM is an ordinary Unix process, it makes certain
assumptions about how much memory is available to it, which means it will not run well
when this memory is limited from the outside. For Java implementations, you should run
the test with:

SKIP_MEMORY_LIMIT=yes ./test-concat.sh ./wrap-java.sh

2If you choose languages that embed C, such as C++ or Rust, you must use those parts of C++’s or Rust’s
standard library that do not overlap with C’s. So you can’t use ::fread in C++ or the libc crate in Rust.

3Depending on the language, what constitutes part of a language and what is “external” can be some-
what fuzzy: for the purposes of this exercise, the deciding criterion will be the ability to access this func-
tionality without requiring additional installation steps. For example, in Java, you may use all of java.
but not Apache Commons or Guava. In Javascript, you may use functionality that is provided by node.js,
but not functionality that requires the installation of npm packages. Similar calls can be made for other
languages.

4Don’t submit the wrapper script though, our grader will identify the language and create its own script
when necessary.

5

https://en.wikipedia.org/wiki/Shebang_(Unix)
https://wiki.bash-hackers.org/scripting/posparams#all_positional_parameters

CS3214 Fall 2023 Exercise 0

and make sure that the memory your program uses is instead limited in wrap-java.sh
via the -Xmx flag.

What does SKIP_MEMORY_LIMIT=yes do? Whenever you prefix a command you
type in bash with ENVVAR=value, bash will set an environment variable ENVVAR
and give it the specific value before starting the program that follows. This vari-
able is temporary in that it is in effect only during the execution of the command
the user is running. This is a common way to influence the execution of programs
without requiring other options such as configuration files or command line param-
eters. The programs so controlled will use the getenv() function to retrieve the
value of these variables. If the program being run is a shell script, as in the case of
test-concat.sh, they can access it directly.
You are encouraged to read test-concat.sh as it provides more examples of how
to run programs on the command line. It also shows the different ways in which a
shell can control a program’s standard input streams.

Hint: most higher-level languages allow compact implementations of these tasks. For
instance, a Python 3 implementation is 22 lines long.

Implementation Requirement: the implementation requirement is the same. Do not
special case standard input/output, use a single function. Unlike for C, this single func-
tion can be one that you write, but some languages already provide a suitable function in
their standard library that you may be able to look up.

Efficiency. You should use buffered forms of input and output in order to reduce the
number of system calls your program makes. For instance, in C, the stdio library provides
such buffering by default if you use fgetc() or fread(), whereas if you use the lower-
level read() call directly you will need to make sure that you do buffering yourself
(in other words, read multiple bytes at once rather than a single byte in each call). The
autograder will run your program under a suitable timeout that is designed to eliminate
submissions that lack buffering.

Use of Byte Streams. For both parts 2 and 3, your program must not attempt to interpret
the content of the streams it reads and writes in any way. In other words, it should output
the bytes (octets) that appear in the input as they appear, without making assumptions
or processing them in any way. This includes the possible occurrence of the byte value
0x00, which may occur any number of times in the input and must be copied into the
output.

Similarly, the byte value 0x0A (aka LF, or LINEFEED character) may occur any number
of times. Your program should not assign special significance to either of them, so do not
assume (a) that data read can be represented as zero-terminated C-style strings, and (b)
do not assume that the input can be broken into lines efficiently. (The worst case input
would be a sequence that didn’t contain any LF characters at all.)

6

CS3214 Fall 2023 Exercise 0

Avoid Character-based Input Routines. Many real-world programs process input that
is thought to represent characters, which has contributed to the fact that the I/O libraries
of some higher-level languages default to the assumption that programmers will want
to input and/or output character streams in some valid encoding when accessing file
streams. Note that character streams are abstractions built on top of byte streams - at the
process/OS boundary all I/O is byte-based (this is true for at least the vast majority of
contemporary environments).

The most commonly used character set today is the Unicode character set, and the en-
coding that is most commonly used is UTF-8. For instance, nearly all web content uses
this character set and encoding. In the UTF-8 encoding, the unicode character U+263A is
encoded as a 3-byte sequence 0xE2 0x98 0xBA. While any sequence of Unicode charac-
ters can be encoded into a sequence of bytes, the opposite is not true: not every sequence
of bytes represents a valid encoding of some characters. 5

For the two implementations of concatenate you’re being asked to implement, do not as-
sume that the input represents characters in any valid encoding. Specifically, the input
data may not represent a valid UTF-8 encoding, and therefore, attempts to interpret it
as UTF-8 data and decode it will fail for some tests, resulting in exceptions and/or data
corruption. This means that you must be careful to avoid the default implementation in
those languages that default to imposing a character stream abstraction, which include
Python 3 and Java. Instead, you will need to examine their API and find the correspond-
ing constructs that give you access to byte-based streams, which are sometimes referred
to as “binary” forms of input or output.

4 A UTF-8 to UTF-32 converter

In this part of the exercise, you will implement a simple utility that interprets its standard
input stream as a stream of UTF-8 encoded Unicode characters, decodes them, and then
encodes these characters as UTF-32 and outputs the encoded characters to its standard
output.

If the standard input contains a valid encoding of Unicode characters, the utility should
decode and encode them in UTF-32; else it should report an error and abort6. Your pro-
gram should not prepend a byte-order mark (BOM) and it should output UTF-32 using
little endian byteorder. For the purposes of this exercise, you may assume that your pro-
gram is run on a machine that uses little endian byte order. This function is similar to the
Unix tool iconv -f utf8 -t utf32le that performs the same conversion.

Write a program utf8_to_utf32.c using only functions that are part of the C standard
library. You may use the fgetwc (easiest) or the mbrtowc functions, or identify the

5For those wanting to learn more about the rationale behind UTF-8, I recommend The history of UTF-8
as told by Rob Pike which describes how Ken Thompson invented UTF-8 in one evening and how they
together built the first system-wide implementation in less than a week.

6aborting is accomplished via the abort() function, which sends the SIGABRT signal to the process,
which then typically leads to its termination

7

http://doc.cat-v.org/bell_labs/utf-8_history
http://doc.cat-v.org/bell_labs/utf-8_history

CS3214 Fall 2023 Exercise 0

length of each encoded Unicode character manually. Your program must use buffering
for its system calls as well. Remember to use the setlocale(3) function to set the
character type locale (LC_CTYPE) to "en_US.utf8".

In addition, since the size of the output can be up to four times the size of the input,
you may need to implement an additional layer of buffering to reduce the number of
times you call your output function. For instance, in C, you can avoid frequent calls to
fwrite() by first buffering larger chunks. This will reduce the function call overhead
in addition to the buffering already done by the standard library that avoids frequent
system calls.

If the standard input stream does not consist of correctly encoded Unicode characters in
the UTF-8 transfer encoding, output to standard error this message:

Invalid or incomplete multibyte or wide character

Your program may have already output converted characters to its standard output when
it identifies this situation. Our tests will ignore these.

Finally, write the same program in a high-level language of your choice.

Unlike for the concatenate program, you only need to process the program’s standard
input stream and you do not need to handle the case where names of files are passed as
command line arguments.

You may use the script test-utf8-to-32.sh to test your code. Independent of the
size of the input stream, your program must not use more than 120MB of virtual memory
– this is how we will enforce that your program does not attempt to buffer the entire
content of its standard input stream in memory.

For Java users: For Java, we will again use SKIP_MEMORY_LIMIT=yes and instead
limit heap memory with an -Xmx120m switch. Furthermore, note that the Java Uni-
code API assumes an internal representation of Unicode strings as 16-bit values.
Thus, certain Unicode codepoints require 2 Java chars to represent them. Java calls
these “surrogate pairs.” Make sure to pay attention to the case where a surrogate
pair occurs at the boundary of a buffer. For instance, if a surrogate pair spans offset
127 and 128 (counting from 0), and you’ve read 128 characters into your buffer, you
will not be able to process this surrogate pair as you have read only the high surro-
gate character of this pair so far. You also can’t avoid this situation by reading all of
standard input into a single buffer upfront as that would violate the memory limit
requirement. A possible strategy is to check for the case where the last (16-bit) char-
acter read is a high surrogate and if so, store it and logically prepend it to the buffer
you use when processing the next chunk of input. Alternatively, use a more recently
designed language - Python 3, for instance, does not expose its internal character rep-
resentation in its Unicode support API and thus does not suffer from this issue.

What to submit:

Submit a tar file with your answers, containing the files:

8

CS3214 Fall 2023 Exercise 0

• a png file readyprompt.png with the screenshot that shows you’re ready for
CS3214.

• a C file concatenate.c containing your implementation for part 2,

• a C file utf8_to_utf32.c containing your C implementation for part 4,

• a file concatenate.? with a suitable suffix containing your implementation for
part 3 in another language,

• a file utf8_to_utf32.? with a suitable suffix containing your implementation for
part 4 in another language.

Do not submit compiled executables. All 4 required programs are short programs.

Hint: when preparing your submission, avoid the following mistake. To produce a tar
file to submit, run

tar cvf ex0submission.tar concatenate.c utf8_to_utf32.c ...

where in place of the dots you put the names of the files containing your high-level lan-
guage implementations. This will create a file ex0submission.tar7 as an archive con-
taining concatenate.c, utf8_to_utf32.c, and so on.

Don’t do

tar cvf concatenate.c utf8_to_utf32.c ...

Because that would create an archive concatenate.c containing utf8_to_utf32.c
and so on... in the process, and would, without warning, clobber the existing concatenate.c
file you’ve just spent time creating.

7the name you choose doesn’t actually matter to our submission system

9

	Using Linux
	Understanding Command Line Arguments and Standard I/O in Unix
	Understanding how to access the Standard Input and Output Streams in your Preferred Language
	A UTF-8 to UTF-32 converter

