
On Undefined Behavior in C/C++/Rust

Godmar Back

Virginia Tech

September 20, 2022

Godmar Back Undefined Behavior 1/11 1 / 11



An slightly modified example of CS3214 p3 student code

mm malloc.c
#include <stdlib.h>

#include <stdio.h>

#define NUM_LISTS 2

static int list_bsizes[NUM_LISTS] = { 0, 1024 };

static void find_fit(size_t asize) {

int i = 0;

for (; i < NUM_LISTS; i++) {

if (asize <= list_bsizes[i + 1]) {

return;

}

}

printf("I'm here\n");

return;

}

(cont’d)
void *mm_malloc(size_t size) {

if (size <= 1024)

abort();

find_fit(size);

return NULL;

}

What happens if
mm malloc(1025) is called?

Godmar Back Undefined Behavior 2/11 2 / 11



An slightly modified example of CS3214 p3 student code

mm malloc.c
#include <stdlib.h>

#include <stdio.h>

#define NUM_LISTS 2

static int list_bsizes[NUM_LISTS] = { 0, 1024 };

static void find_fit(size_t asize) {

int i = 0;

for (; i < NUM_LISTS; i++) {

if (asize <= list_bsizes[i + 1]) {

return;

}

}

printf("I'm here\n");

return;

}

(cont’d)
void *mm_malloc(size_t size) {

if (size <= 1024)

abort();

find_fit(size);

return NULL;

}

gcc 6.4, with -O2
mm_malloc(unsigned long):

subq $8, %rsp

call abort

Godmar Back Undefined Behavior 3/11 3 / 11



What happened?

If mm malloc is called with a size less or equal to 1024, it would call abort()
which won’t return.

So find fit(size) is called with a size greater than 1024.

The first loop then will access list bsizes[2] which is out of bounds.

This is undefined behavior, which can’t happen.

Therefore, find fit() isn’t called.

Therefore, size must have been less or equal to 1024.

Therefore, mm malloc() will always call abort (!?)

Godmar Back Undefined Behavior 4/11 4 / 11



Undefined vs. Unspecified Behavior

ISO/IEC 9899:2017: undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous
data, for which this International Standard imposes no requirementsa

aNote 1 to entry: Possible undefined behavior ranges from ignoring the situation completely with

unpredictable results, to behaving during translation or program execution in a documented manner

characteristic of the environment (with or without the issuance of a diagnostic message), to terminating a

translation or execution (with the issuance of a diagnostic message).

unspecified behavior
use of an unspecified value, or other behavior where this International Standard
provides two or more possibilities and imposes no further requirements on which is
chosen in any instance
implemented-defined behavior: unspecified behavior where each implementation
documents how the choice is made

Godmar Back Undefined Behavior 5/11 5 / 11



Examples of Unspecified Behavior

The manner and timing of static initialization

Many aspects of the representations of types

The value of padding bytes when storing values in structures or unions

Whether two string literals result in distinct arrays

The order in which the function designator, arguments, and subexpressions
within the arguments are evaluated in a function call

The order in which the operands of an assignment operator are evaluated

... and many more (total over 60 items)

Godmar Back Undefined Behavior 6/11 6 / 11



Examples of Undefined Behavior

A “shall” or “shall not” requirement that appears outside of a constraint is
violated1

An object is referred to outside of its lifetime

The value of a pointer to an object whose lifetime has ended is used

The value of an object with automatic storage duration is used while it is
indeterminate

Conversion to or from an integer type produces a value outside the range that
can be represented

The execution of a program contains a data race

... the entire list fills 10 pages in appendix J.2

1The word “shall” appears 943 times in the document

Godmar Back Undefined Behavior 7/11 7 / 11



Security Impact

In a paper at SOSP’13 [2], Wang et al analyzed code bases for reliance on
undefined behavior. They found instances in thousands of C/C++ packages.

Source: Vulnerability Note VU#162289, US-CERT, 2008
char *buf = ...;

char *buf_end = ...;

unsigned int len = ...;

if (buf + len >= buf_end)

return; /* len too large */

if (buf + len < buf)

return; /* overflow, buf+len wrapped around */

/* write to buf[0..len-1] */

Godmar Back Undefined Behavior 8/11 8 / 11



Security Impact

In a paper at SOSP’13 [2], Wang et al analyzed code bases for reliance on
undefined behavior. They found instances in thousands of C/C++ packages.

Source: Vulnerability Note VU#162289, US-CERT, 2008
char *buf = ...;

char *buf_end = ...;

unsigned int len = ...;

if (buf + len >= buf_end)

return; /* len too large */

if (buf + len < buf)

return; /* overflow, buf+len wrapped around */

/* write to buf[0..len-1] */

Compiler knows that pointer arithmetic overflow is undefined behavior, so it
“knows” that buf + len is always greater or equal than buf and
elides the check.

Godmar Back Undefined Behavior 9/11 9 / 11



Practical Consequences

First, intuition is wrong: cannot reason about what might happen to code that
exhibits undefined behavior. “It will crash...” or “It’ll eventually overrun the
bounds...” etc. do not work.

Second, you must use the (limited) tools we do have available:
Valgrind: flags undefined behavior that the compiler didn’t recognize and eliminate2

Undefined sanitizer (ubsan), see
https://developers.redhat.com/blog/2014/10/16/gcc-undefined-behavior-sanitizer-ubsan

2I am not referring to looking for memory leaks with valgrind, which is a different topic altogether.

Godmar Back Undefined Behavior 10/11 10 / 11



References

[1] Chris Lattner.
What every c programmer should know about undefined behavior.
https://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html.

[2] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama.
Towards optimization-safe systems: Analyzing the impact of undefined behavior.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, page 260–275, New York, NY, USA, 2013. Association for
Computing Machinery.

[3] Victor Yodaiken.
How ISO C became unusable for operating systems development.
In Proceedings of the 11th Workshop on Programming Languages and Operating
Systems, PLOS ’21, page 84–90. Association for Computing Machinery, 2021.

Godmar Back Undefined Behavior 11/11 11 / 11

https://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html

