
1

Instructor: Huaicheng Li

Sept 13 2022

2

q A small message to notify a process of an event

q Similar to exceptions and interrupts

q Who generates signals?
§ Self, other-processes, the kernel

q Signal types (interger ID’s, e.g., <32)

ID Name Default Action Corresponding Event

2 SIGINT Terminate User typed ctrl-c
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

3

q SIGILL (1) Illegal Instruction
SIGABRT (1) Program called abort()
SIGFPE (1) Floating Point Exception (e.g. integer division by zero)
SIGSEGV (1) Segmentation Fault - catch all for memory and privilege violations
SIGPIPE (1) Broken Pipe - attempt to write to a closed pipe
SIGTTIN (2) Terminal input - attempt to read from terminal while in background
SIGTTOU (2) Terminal output - attempt to write to terminal while in background

(1) Default action: terminate the process
(2) Default action: stop the process

4

q SIGINT (1, 3) Interrupt: user typed Ctrl-C
SIGQUIT (1, 3) Interrupt: user typed Ctrl-\
SIGTERM (3) User typed kill pid (default)
SIGKILL (2, 3) User typed kill -9 pid (urgent)
SIGALRM (1, 3) An alarm timer went off (alarm(2))
SIGCHLD (1) A child process terminated or was stopped
SIGTSTP (1) Terminal stop: user typed Ctrl-Z
SIGSTOP (2) User typed kill -STOP pid

(1) These are sent by the kernel, e.g., terminal device driver
(2) SIGKILL and SIGSTOP cannot be caught or ignored
(3) Default action: terminate the process

5

q Kernel sends a signal to a destination process by updating some state in
the context of the destination process
§ divide-by-zero (SIGFPE)
§ Termination of a child process (SIGCHLD)

q Another process has invoked kill() system call to explicitly request the
kernel to send a signal to the destination process

q raise()

6

q A destination process receives a signal when it is forced by the kernel to
react in some way to the delivery of the signal

q Possible reactions
§ Ignore the signal (do nothing)
§ Terminate the process (e.g., with core dump)
§ Catch the signal by executing a user-level function called signal handler

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler
returns to
next instruction

Icurr
Inext

(1) Signal received by
process

7

q Pending: sent but not yet received
§ At most one pending signal of any particular type
§ Signals are not queued (On/Off)

q A process can block the receipt of certain signals
§ Blocked signal can be delivered, but will not be received until the signal is

unblocked

q A pending signal is received at most once

q Kernel maintains pending and blocked bit vectors in the context of each
process
§ Pending: kernel sets/clears certain bits when a signal is delivered/received
§ Blocked: sigprocmask(), aka, signal mask

8

9

q Concurrent with main program

q Guidelines to avoid trouble
§ Keep handlers simple
§ Only use async-signal-safe functions (no printf)
§ Save and restore errno on entry and exit to avoid overwrite
§ Temporarily blocking all signals to protect access to shared data structures
§ Declare global variables as volatile to prevent compiler from storing them in a

register
§ Declare global flags as volatile sig_atomic_t

10

q Man 7 signal

q Safe: _exit(), write(), wait(), waitpid(), sleep(), kill()

q Unsafe: printf(), sprint(), malloc(), exit()

11

user mode

kernel mode

handler

block(SIGNAL)

signal sent
Signal handler returns
sigreturn()

unblock(SIGNAL)signal pending

Protected Section Unprotected Section

If signals are masked/blocked most of the time in the main program, signal handlers can call most functions, but
signal delivery may be delayed. If a signal is not masked most of the time, signal handlers must be very carefully
implemented. In practice, coarse-grained solutions are perfectly acceptable unless there is a requirement that
bounds the maximum allowed latency in which to react to a signal. Side note: OS face the same trade-off when
implementing (hardware) interrupt handlers.

12

q Explicit blocking/unblocking: sigprocmask()

q Others
§ sigemptyset() – create empty set
§ sigfillset() – Add every signal number to set
§ sigaddset() – Add signal number to set
§ sigdelset() – Delete signal number from set

sigset_t mask, prev_mask;
sigemptyset(&mask);
sigaddset(&mask, SIGINT);

/* Block SIGINT and save previous blocked set */
sigprocmask(SIG_BLOCK, &mask, &prev_mask);

/* Code region that will not be interrupted by SIGINT */
/* Restore previous blocked set, unblocking SIGINT */
sigprocmask(SIG_SETMASK, &prev_mask, NULL);

13

q One process belongs to one process group
§ getpgrp(), get process group of current process
§ setpgid(): change process group

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

Fore-
ground

job

14

q Kill -9 1000: Send SIGKILL to process 1000

q Kill -9 -1000: Send SIGKILL to every process in process group 1000

q Ctrl-C: SIGINT

q Ctrl-Z: SIGTSTP

15

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Signal delivered
to process A

Signal received
to process A

16

q Uniform APIs for programs to determine actions to be taken for signals
§ Terminating the process, core dump
§ Ignoring the signal
§ Invoking a user-defined handler
§ Stop the process
§ Continuing the process

17

q Handler_t *signal(int signum, handler_t *handler)

void sigint_handler(int sig) /* SIGINT handler */
{

printf("So you think you can stop the bomb with ctrl-c, do you?\n");
sleep(2);
printf("Well...");
exit(0);

}

int main()
{

/* Install the SIGINT handler */
if (signal(SIGINT, sigint_handler) == SIG_ERR)

unix_error("signal error");
/* Wait for the receipt of a signal */
pause();
return 0;

}

