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Announcements

Q Project | released, deadline: 9/28 | |:59pm



Linux/Unix: Everything is a file



Standard Streams

a C:stdin (0), stdout (1), stderr (2)



Q File path

= Absolute path (e.g., /usr/bin/ls) User Progr’am
= Relative path (e.g., ./a.out)
3 File types File System
= Regular /
= Block / character
= Socket Device Driver
" Directory
» Links
. SSDs/Disks

Q File/Storage Stack
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int fd = open(const char *path, int oflag, ...);

File Descriptor

ssize_t ret = write(int fd, void *buf, size_t nbyte);

ssize_t ret = read(int fd, void *buf, size_t nbyte);

ssize_t ret = close(int fd);



Accessing Open Files

0O Two opens of the same file yield independent sessions

fdl

—> offset| —

fd2

“/foo/bar”
— Offset2 /

File

Open file File

descriptors objects

O Two opens of the same file yield independent sessions
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fd2

> offset2 —— “/foo/bar’



Some associated structures in kernel space

Open File Structures

fds[0]
fds[l]— | fflag  f_flag f flag
fds[2] f_count=I f{ count=2 f_count=2
fds[n] f_offset f_offset * f_offset
f_vnode  f vnode f_vnode
Process A | I 1
fds[0]
fds[ 1]
fds[2]
“sharing” file structure but
fds[n] have different file descriptors

Process B
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Open File Table

vnode Table

Network; refcnt = 1
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Process A Open file table I-node table
File descriptor table (system-wide) (system-wide)

fd | file file | status [ inode file | file
flags | ptr offset | flags ptr type | locks

fd 0 B
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Process B
File descriptor table

fd | file 73 \
flags | ptr

fdo
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a cIose(fd)
clear entry in file descriptor table, decrement refcount in open file table
* if zero, deallocate entry in open file table and decrement refcount in vnode table
» if zero, deallocate entry in vnode table and close underlying object
= for certain objects (pipes, socket), closing the underlying object has important side effects that
occur only if all file descriptors referring to it have been closed

Q Iseek(fd, offset, ...)

QO dup(int fd): create a new file descriptor referring to the same file descriptor as
fd, increment refcount

Q dup2(int fromfd, int tofd): if tofd is open, close it. Then, assign tofd to
the same open file entry as fromfd, increment refcount

Q opendir(), closedir(), readdir(), ...

O On fork(), the child inherits a copy of the parent’s file descriptor table (and the
reference count of each open file table entries is incremented)
On exit() (or abnormal termination), all entries are closed
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——) data ——

Pipes write O read

QO Writers:
" can store data in the pipe as long as there is space
" blocks if pipe is full until reader drains pipe

0 Readers:
" drains pipe by reading from it
= if empty, blocks until writer writes data

0 Pipes provide a classic “bounded buffer’” abstraction that
" is safe: no race conditions, no shared memory, handled by kernel

= provides flow control that automatically controls relative progress: e.g., if writer is
BLOCKED, but reader is READY, it’ll be scheduled. And vice versa.

» Created unnamed; file descriptor table entry provide for automatic cleanup
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