CS 3214: Computer Systems
Lecture 6: File Descriptors + Pipe

Instructor: Huaicheng Li

Sept 8 2022

7

VIRGINIA TECH.

Announcements

Q Project | released, deadline: 9/28 | |:59pm

Linux/Unix: Everything is a file

Standard Streams

a C:stdin (0), stdout (1), stderr (2)

Q File path

= Absolute path (e.g., /usr/bin/ls) User Progr’am
= Relative path (e.g., ./a.out)
3 File types File System
= Regular /
= Block / character
= Socket Device Driver
" Directory
» Links
. SSDs/Disks

Q File/Storage Stack

Storage Stack

User Level

Kernel

read() write() close()

System Cal

Is

File Descriptors

File System

EXT4

int fd = open(const char *path, int oflag, ...);

File Descriptor

ssize_t ret = write(int fd, void *buf, size_t nbyte);

ssize_t ret = read(int fd, void *buf, size_t nbyte);

ssize_t ret = close(int fd);

Accessing Open Files

0O Two opens of the same file yield independent sessions

fdl

—> offset| —

fd2

“/foo/bar”
— Offset2 /

File

Open file File

descriptors objects

O Two opens of the same file yield independent sessions

fdl

fd2

> offset2 —— “/foo/bar’

Some associated structures in kernel space

Open File Structures

fds[0]
fds[l]— | fflag f_flag f flag
fds[2] f_count=I f{ count=2 f_count=2
fds[n] f_offset f_offset * f_offset
f_vnode f vnode f_vnode
Process A | I 1
fds[0]
fds[1]
fds[2]
“sharing” file structure but
fds[n] have different file descriptors

Process B

10

Open File Table

vnode Table

Network; refcnt = 1

| Ss800.d

Z SSe20.d

Process A Open file table I-node table
File descriptor table (system-wide) (system-wide)

fd | file file | status [inode file | file
flags | ptr offset | flags ptr type | locks

fd 0 B

Jd1 - 294

/|

12
Je \ 23 -

1976

fd 20 7

Process B
File descriptor table

fd | file 73 \
flags | ptr

fdo

86 J 5139

fd 1

fd2

NN

fd3 %

a cIose(fd)
clear entry in file descriptor table, decrement refcount in open file table
* if zero, deallocate entry in open file table and decrement refcount in vnode table
» if zero, deallocate entry in vnode table and close underlying object
= for certain objects (pipes, socket), closing the underlying object has important side effects that
occur only if all file descriptors referring to it have been closed

Q Iseek(fd, offset, ...)

QO dup(int fd): create a new file descriptor referring to the same file descriptor as
fd, increment refcount

Q dup2(int fromfd, int tofd): if tofd is open, close it. Then, assign tofd to
the same open file entry as fromfd, increment refcount

Q opendir(), closedir(), readdir(), ...

O On fork(), the child inherits a copy of the parent’s file descriptor table (and the
reference count of each open file table entries is incremented)
On exit() (or abnormal termination), all entries are closed

12

——) data ——

Pipes write O read

QO Writers:
" can store data in the pipe as long as there is space
" blocks if pipe is full until reader drains pipe

0 Readers:
" drains pipe by reading from it
= if empty, blocks until writer writes data

0 Pipes provide a classic “bounded buffer’” abstraction that
" is safe: no race conditions, no shared memory, handled by kernel

= provides flow control that automatically controls relative progress: e.g., if writer is
BLOCKED, but reader is READY, it’ll be scheduled. And vice versa.

» Created unnamed; file descriptor table entry provide for automatic cleanup

13

