
1

Instructor: Huaicheng Li

Sept 8 2022



2

q Project 1 released, deadline: 9/28 11:59pm



3

Linux/Unix: Everything is a file 



4

q C: stdin (0), stdout (1), stderr (2)



5

q File path
§ Absolute path (e.g., /usr/bin/ls)
§ Relative path (e.g., ./a.out)

q File types
§ Regular
§ Block / character
§ Socket
§ Directory
§ Links
§ …

q File/Storage Stack

User Program

File System

Device Driver

SSDs/Disks



6

User Level

System Calls

File Descriptors

File System

Kernel

SSDs

EXT4

read() write() close()



7

File Descriptor

! ssize_t ret = write(int fd, void *buf, size_t nbyte);

! ssize_t ret = read(int fd, void *buf, size_t nbyte);

! ssize_t ret = close(int fd);

! int fd = open(const char *path, int oflag, …);



8

q Two opens of the same file yield independent sessions

fd1

fd2

File
descriptors

Open file
objects File

offset1

offset2
“/foo/bar”

q Two opens of the same file yield independent sessions

fd1

fd2

offset2 “/foo/bar”



9

Open File Structures

fds[0]
fds[1]
fds[2]
fds[n]

f_flag
f_count=2
f_offset
f_vnode

f_flag
f_count=2
f_offset
f_vnode

f_flag
f_count=1
f_offset
f_vnode

. . .

Process B

“sharing” file structure but 
have different file descriptors

fds[0]
fds[1]
fds[2]
...
fds[n]

Process A



10
Open File Table

vnode Table

/dev/pty/7; refcnt = 1

/tmp/file1; refcnt = 2

/tmp/file2; refcnt = 1

Network; refcnt = 1

r/w pos = ? 
refcnt = 4 

r/w pos = 200 
refcnt = 1 

r/w pos = 250 
refcnt = 1 

r/w pos = 500 
refcnt = 3

r/w pos = ? 
refcnt = 1 

r/w pos = ? 
refcnt = 1 

Pipe (Rd) refcnt = 1

r/w pos = ?
refcnt = 1

Pipe (Wr); refcnt = 1

0

1

2

3

4

5

0

1

2

3

4

5

P
ro

ce
ss

 1
P

ro
ce

ss
 2



11



12

q close(fd):
§ clear entry in file descriptor table, decrement refcount in open file table
§ if zero, deallocate entry in open file table and decrement refcount in vnode table
§ if zero, deallocate entry in vnode table and close underlying object
§ for certain objects (pipes, socket), closing the underlying object has important side effects that 

occur only if all file descriptors referring to it have been closed

q lseek(fd, offset, …)

q dup(int fd): create a new file descriptor referring to the same file descriptor as
fd, increment refcount

q dup2(int fromfd, int tofd): if tofd is open, close it. Then, assign tofd to
the same open file entry as fromfd, increment refcount

q opendir(), closedir(), readdir(), …

q On fork(), the child inherits a copy of the parent’s file descriptor table (and the
reference count of each open file table entries is incremented)
On exit() (or abnormal termination), all entries are closed



13

q Writers:
§ can store data in the pipe as long as there is space
§ blocks if pipe is full until reader drains pipe

q Readers:
§ drains pipe by reading from it
§ if empty, blocks until writer writes data

q Pipes provide a classic “bounded buffer” abstraction that
§ is safe: no race conditions, no shared memory, handled by kernel
§ provides flow control that automatically controls relative progress: e.g., if writer is

BLOCKED, but reader is READY, it’ll be scheduled. And vice versa.
§ Created unnamed; file descriptor table entry provide for automatic cleanup

write read
data


