
1

Instructor: Huaicheng Li

Aug 30 2022



2

q Ex0 released, deadline: 9/2 11:59pm



3

q Running: executing its instructions on CPUs

q Ready: ready to execute but waiting for its turn

q Blocked: stopped due to external events, cannot make use of CPUs even if 
some are available

q Running à Blocked
§ Input, exclusion access to a lock, signal, sleep(), waiting for child process

q Blocked à Ready
§ OS adds the process to a ready queue

q Ready à Running
§ 1 process per CPU, scheduling policy

q Running à Ready
§ De-scheduled (yield or preempted)



4

1. What happens if an n CPU system has exactly n READY processes?

2. What happens if an n CPU system has 0 READY processes?

3. What happens if an n CPU system has k < n READY processes?

4. What happens if an n CPU system has 2n READY processes?

5. What happens if an n CPU system has m >> n READY processes?

6. What is a typical number of BLOCKED/READY/RUNNING processes in a
system (e.g., your phone or laptop?)

7. How does the code you write influence the proportion of time your program
spends in the READY/RUNNING state?

8. How can the number of processes in the READY/RUNNING state be used to
measure CPU demand?

9. Assuming the same functionality is achieved, is it better to write code that
causes a process to spend most of its time BLOCKED, or READY?



5

q Prefer BLOCKED to READY because it does not consume CPU; use OS
facilities to wait for events rather than poll in a loop

q 150 − 500 BLOCKED, and 0 − 2 RUNNING

q Every process takes about twice as long as it normally would

q The load average is a weighted moving average of the size of the ready queue
(including RUNNING processes); it says how many CPUs could be kept busy

q System becomes very laggy, processes take much longer than normal

q n − k CPUs are idle, k CPUs run exactly 1 process

q Each CPU runs exactly 1 process

q Performing computation without performing I/O means the process is READY
at all times and will be RUNNING if scheduled.

q The system is idle and goes into a low-power mode



6

q Our model is simplified, real OS often maintain state diagrams with 5-15 
states for their threads/tasks
§ Linux uses the following states

D uninterruptible sleep (usually IO)
I Idle kernel thread
R running or runnable (on run queue)
S interruptible sleep (waiting for an event to complete)
T stopped by job control signal
t stopped by debugger during the tracing
X dead (should never be seen)
Z defunct ("zombie") process, terminated but not reaped by its parent



7

q Job control: stop/suspend, and resume a process
§ Linux commands: jobs, bg, fg, Ctrl-Z

q Job control and process states



8

q Process state transitions are guided by decisions or events outside the
programmer’s control (user actions, user input, I/O events, inter-process
communication, synchronization) and/or decisions made by the OS (scheduling
decisions)

q They may occur frequently, and over small time scales
§ e.g., on Linux preemption may occur every 4ms for RUNNING processes
§ when processes interact on shared resources (locks, pipes) they may frequently

block/unblock)

q For all practical purposes, these transitions, and the resulting execution order,
are unpredictable

q The resulting concurrency requires that programmers not make any 
assumptions about the order in which processes execute; rather, they must use 
signaling and synchronization facilities to coordinate any process interactions


