
TCP/IP and Socket Programming

CS3214 Instructors

Virginia Tech

November 17, 2022

CS3214 Instructors TCP/IP & Socket Programming 1/25 1 / 25

Outline

Goal: obtain working knowledge of TCP/IP (+UDP), including IPv4/IPv6, to
become productive with writing simple network applications

Transport layer protocols: TCP and UDP
Use of ports
Demultiplexing in TCP/UDP

IPv4 addressing & routing
including subnets & CIDR

Protocol independence (IPv6)

BSD socket API
including utility functions for DNS name resolution

CS3214 Instructors TCP/IP & Socket Programming 2/25 2 / 25

Transport and Network Layer

Transport Layer Protocols: UDP and TCP
TCP: reliable data transmission
UDP: unreliable (best effort) data transmission
Port numbers are used to address applications

Network Layer Protocols: IPv4 and IPv6
IP addresses are used to address hosts (*)

Both protocols are designed to work with IP, hence the
terms TCP/IP and UDP/IP

(*) technically, network interfaces - will explain difference
shortly

Figure 1: Internet Protocol
Stack

CS3214 Instructors TCP/IP & Socket Programming 3/25 3 / 25

User Datagram Protocol - UDP

Specified in RFC 768 (1980)

simple: specification is 2 pages

datagram oriented: up to 64K messages

connectionless: no connection setup required

unreliable: best effort, makes no attempt to compensate for packet loss

supports multicast

Figure 2: Source: WikiPedia

CS3214 Instructors TCP/IP & Socket Programming 4/25 4 / 25

https://tools.ietf.org/html/rfc768
https://en.wikipedia.org/wiki/User_Datagram_Protocol#UDP_datagram_structure

Transmission Control Protocol - TCP

Specification

RFCs: 793 (1981), 1122 (1989), and many subsequent ones, see 7414[1] for 2015
road map.

point-to-point: one sender, one
receiver

reliable, in-order byte stream: no
“message boundaries”

pipelined: transmission proceeds even
while partially unack’ed data

send & receive buffers: to hold this
data

full duplex data: bi-directional data
flow in same connection

connection-oriented: handshaking
(exchange of control msgs) before
data exchange

flow controlled: sender will not
overwhelm receiver

congestion controlled: protects the
network

CS3214 Instructors TCP/IP & Socket Programming 5/25 5 / 25

https://tools.ietf.org/html/rfc7414

Figure 3: TCP Segment Header. Source: WikiPedia

CS3214 Instructors TCP/IP & Socket Programming 6/25 6 / 25

https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure

TCP/IP & UDP/IP Addressing/Demultiplexing

Question:
How does process A on host H1 communicate with process B on host H2?

Each stream is characterized by a quadruple (As ,Ps ,Ad ,Pd) where
As , Ad are source and destination addresses - either a 32-bit IPv4 address or a 128-bit IPv6
address, e.g. 172.217.9.196 or 2607:f8b0:4004:807::2004
Ps , Pd are 16-bit port numbers - there is one namespace per address + protocol
combination, e.g. 80/tcp, 80/tcp6, 53/udp, 53/udp6. See /etc/services for commonly
used port numbers

Local vs remote/peer addresses are pairs (As ,Ps) or (Ad ,Pd) respectively,
depending on perspective

Demultiplexing (determining where to deliver incoming packets) requires full
quadruple for TCP, but only (Ad ,Pd) for UDP

CS3214 Instructors TCP/IP & Socket Programming 7/25 7 / 25

IP Addresses

Figure 4: What’s wrong with this picture? Source: http://i.imgur.com/zXR0qAN.png

CS3214 Instructors TCP/IP & Socket Programming 8/25 8 / 25

http://i.imgur.com/zXR0qAN.png

IPv4 Addressing

IP addresses do not denote hosts, they
denote interfaces (a host may have more
than 1)

Connected interfaces form a subnet whose
addresses must share a common prefix

Subnets are routing destinations

No routing within subnet - can reach
destination directly

CIDR allows for up to 31 prefix bits:
223.1.1.0/24 includes 223.1.1.0 – 223.1.1.255
(netmask 255.255.255.0)
223.1.7.0/30 includes 223.1.7.0 – 223.1.7.3
(netmask 255.255.255.252) Figure 5: Subnetting in IPv4

CS3214 Instructors TCP/IP & Socket Programming 9/25 9 / 25

IPv4 Address Space Subdivision

CS 5565 Exam Question
You are hired as a network administrator by a small company. You are given a small
block of 256 addresses at 191.23.25.0/24.a You have to connect 2 LANs with
60/120 machines at 2 separate sites via PPP to an edge router at your ISP. Assign
IP addresses to each subnet!

aHypothetically. As of 2020, all available IPv4 address space is assigned, and this belongs to Telefônica Brasil

CS3214 Instructors TCP/IP & Socket Programming 10/25 10 / 25

IPv4 Address Space Subdivision: Solution

R2

R1

R3

Internet

191.23.25.198

Ethernet
LAN 1
60 Machines

Ethernet
LAN 2
120 Machines

Subnet address:
191.23.25.128/26
Default gateway:
191.23.25.129

Subnet address:
191.23.25.0/25
Default gateway:
191.23.25.1

191.23.25.1

191.23.25.193

191.23.25.197

191.23.25.194

191.23.25.129PPP Link 1

PPP Link 2
191.23.25.192/30

191.23.25.196/30

CS3214 Instructors TCP/IP & Socket Programming 11/25 11 / 25

The Socket API

first introduced in BSD 4.1 Unix (1981), now de facto standard on all platforms

as a general interprocess communication (IPC) facility:
a host-local, application-created, OS-controlled interface (a “door”) into which application
process can both send and receive messages to/from another application process

when used for network communication:
a door between application process and end-to-end transport protocol (UDP/TCP)

in Unix, sockets are file descriptors, so read(2), write(2), close(2) and
others work

Bindings exist in many higher-level languages: e.g. java.net.Socket, Python
socket

CS3214 Instructors TCP/IP & Socket Programming 12/25 12 / 25

https://docs.python.org/3/library/socket.html

UDP Socket API

Figure 6: Socket API calls used in typical UDP communication scenario

CS3214 Instructors TCP/IP & Socket Programming 13/25 13 / 25

socket(2)

Usage:
int socket(int domain, int type, int protocol);

domain: PF INET, PF UNIX, PF INET6, ...

type: SOCK DGRAM (for UDP), SOCK STREAM (for TCP), ...

protocol: 0 for Unspecified (or IPPROTO UDP or IPPROTO TCP)

returns integer file descriptor

entirely between process and OS – no network actions involved whatsoever

man pages: ip(7), udp(7), tcp(7), socket(2), socket (7), unix(7) type “man 2
socket”, “man 7 socket”

CS3214 Instructors TCP/IP & Socket Programming 14/25 14 / 25

bind(2)

Usage:
int bind(int sockfd, struct sockaddr *my_addr, socklen_t addrlen);

sockfd: return by socket()

my addr: “socket address” - this is the local address (destination for receive,
source for send)

addrlen length of address (address is variable-sized data structure)

“binds” (reserves, associates with) socket to (local) address specified in the
protocol’s namespace

no information is transmitted over network

one socket can be bound to one protocol/port, exceptions are
1 multicast
2 dual-bind same socket can bind to IPv4 and IPv6

CS3214 Instructors TCP/IP & Socket Programming 15/25 15 / 25

Address Family Polymorphism

struct sockaddr { /* GENERIC TYPE, should be "abstract" */

sa_family_t sa_family; /* address family */

char sa_data[14]; /* address data */

};

/* This is the concrete "subtype" for IPv4 */

struct sockaddr_in {

sa_family_t sin_family; /* address family: AF_INET */

u_int16_t sin_port; /* port in network byte order */

struct in_addr sin_addr; /* internet address */

};

struct sockaddr_storage { /* large enough to store addresses */

sa_family_t sa_family; /* address family */

char sa_data[?]; /* address data */

};

CS3214 Instructors TCP/IP & Socket Programming 16/25 16 / 25

IPv4 vs IPv6 addresses

/* Internet IPv4 address. */

struct in_addr {

u_int32_t s_addr; /* address in network byte order */

};

/* IPv6 address */

struct in6_addr {

union

{

uint8_t u6_addr8[16];

uint16_t u6_addr16[8];

uint32_t u6_addr32[4];

} in6_u;

};

Good News
RFC 3493 functions for address manipulation mostly hide internal representations
from the casual and professional socket programmer.

CS3214 Instructors TCP/IP & Socket Programming 17/25 17 / 25

https://tools.ietf.org/html/rfc3493

sendto(2), recvfrom(2), send(2), recv(2), connect(2)

ssize_t sendto(int s, const void *buf, size_t len, int flags,

const struct sockaddr *to, socklen_t tolen);

ssize_t recvfrom(int s, void *buf, size_t len, int flags,

struct sockaddr *from, socklen_t *fromlen);

s, buf, len as in read/write

flags: MSG OOB, MSG PEEK – mostly 0

to/from are remote/peer addresses: where did the datagram come from, where
should it be sent to

NB: fromlen is value-result!

Side note: can use connect(2) to set default address, then send(2)/recv(2).

CS3214 Instructors TCP/IP & Socket Programming 18/25 18 / 25

TCP Socket API Call Sequence

Left: client (“connecting socket”), Right: server
(“listening socket”)

Server may accept multiple clients via multiple calls
to accept, either sequentially or concurrently

Independent directions: read(2)/write(2) may be
used in any order.

read(2)/write(2) or recv(2)/send(2) may be
used

Not shown: shutdown(2) for shutting down one
direction

CS3214 Instructors TCP/IP & Socket Programming 19/25 19 / 25

connect(2)

Usage:
int connect(int sockfd, const struct sockaddr *peeraddr, int addrlen);

sockfd: returned by socket()

peeraddr: peer address

initiates handshake with server, sending SYN packet

successful completion indicates successful handshake

CS3214 Instructors TCP/IP & Socket Programming 20/25 20 / 25

listen(2), accept(2)

Usage:
int listen(int s, int backlog);

int accept(int s, struct sockaddr *addr, int *addrlen);

addr: accepted peer’s (aka client) address

listen() must precede call to accept()

No network action, but informs OS to start queuing connection requests

accept() blocks until client is pending, then returns new socket representing
connection to this client; the passed in socket is ready to accept more clients on
subsequent calls

CS3214 Instructors TCP/IP & Socket Programming 21/25 21 / 25

The IPv6 Challenge

IPv4 provides only 4 billion addresses, leading to address space exhaustion

IPv6 was designed as a successor in the 1990’s

... but IPv6 is a separate network
A host may be connected via IPv4
... or via IPv4 and IPv6
... or only via IPv6

Your network application must work in either case
Do not embed addresses or make assumptions about their size/format in your socket code
Let system tell you which address(es) you should use (as a client)/you should support (as a
server)

CS3214 Instructors TCP/IP & Socket Programming 22/25 22 / 25

https://en.wikipedia.org/wiki/IPv4_address_exhaustion

IPv6 Transition Plan

Servers provide both IPv4 and IPv6, clients prefer IPv6 to IPv4 when both are
available, eventually IPv4 connections will die out ... will it happen?

IPv6 adoption among users
accessing Google services,
Feb 24 2020

CS3214 Instructors TCP/IP & Socket Programming 23/25 23 / 25

Protocol Independent Programming

int getaddrinfo(const char *node, const char *service,

const struct addrinfo *hints, struct addrinfo **res);

Use getaddrinfo() to obtain information about suitable address families and
addresses

For servers to bind to (IPv4, or IPv6, or both): if AI PASSIVE is set and node == NULL

For clients to connect to (based on DNS name or specified address notation); based on
RFC 3484 (now RFC 6724) ordering

Use getnameinfo() to transform addresses in printable form

Mostly correct tutorial at http://www.akkadia.org/drepper/userapi-ipv6.html,
except for pesky issue of how to support both families as a server

can use so-called dual-bind feature (with care, Linux-only)
portable solution is to use 2 separate sockets.

CS3214 Instructors TCP/IP & Socket Programming 24/25 24 / 25

https://tools.ietf.org/html/rfc6724
http://www.akkadia.org/drepper/userapi-ipv6.html

References

[1] Martin Duke, Robert T. Braden, Wesley Eddy, Ethan Blanton, and Alexander
Zimmermann.
A Roadmap for Transmission Control Protocol (TCP) Specification Documents.
RFC 7414, February 2015.

CS3214 Instructors TCP/IP & Socket Programming 25/25 25 / 25

