
Reference Counting
Godmar Back



Reference Counting

Idea: each object keeps a 
count of the number
of references 
(or pointers) to it

instance A 
use_count = 1

Ref 3
Ref 1

instance B
use_count = 2Ref 2Count is incremented when a reference 

is added, decremented when a 
reference is removed.
If the count reaches zero, the object is 
freed immediately (no lag)



Manual Reference Counting
Programmer is responsible for updating reference counts

● Example: Microsoft COM

Must follow established set of rules, e.g.

● Call AddRef() when establishing a new reference
● Call Release() when releasing a reference

Still error-prone, but rules have the advantage that a program’s correctness can 
be asserted locally (without requiring global context)

https://docs.microsoft.com/en-us/windows/win32/com/managing-object-lifetimes-through-reference-counting?redirectedfrom=MSDN


Reference Counting using Smart Pointers
Some languages (e.g., C++, Rust) provide language or library support for 
automatic reference counting when references are created, assigned, copied, 
and/or overwritten.

C++: std::shared_ptr

Rust: std::rc::Rc

Common to these schemes is that 
they cannot handle cycles in the 
object reachability graph

instance A 
use_count = 1

Ref 3

instance A’ 
use_count = 1

Ref 3’


