
1

Instructor: Huaicheng Li

Aug 25 2022



2

q Syllabus quiz released, deadline: 8/31 11:59pm

q Lectures (Please bookmark them)
§ https://courses.cs.vt.edu/cs3214/fall2022/lecturesli/
§ Course schedule: https://tinyurl.com/cs3214-schedule

q Office hours posted
§ TA office hours: Google Calendar (Course website -> MORE INFO -> Staff)
§ Huaicheng Li’s office hours

- Fridays, McBryde 122-B, 1:30-3:30pm (starting 9/2/22)
- Zoom for appointment-based meetings, sign up here

q Exercise 0 will be released soon…

https://courses.cs.vt.edu/cs3214/fall2022/lecturesli/
https://tinyurl.com/cs3214-schedule
https://calendar.google.com/calendar/r?cid=dnQuZWR1XzVva3NrOGlxdm5oZjRsNnJkamZiOXNxcmVjQGdyb3VwLmNhbGVuZGFyLmdvb2dsZS5jb20
https://docs.google.com/spreadsheets/d/1OzZq4_Aj4C43BLpOhL2Ad-xYchch6EGhEOzkGC67xBs/edit


3

q Systems Architecture: Applications / OS / Hardware

q Dual mode operation: Applications <-> OS (protection, isolation, performance)

§ System calls as OS APIs for applications to use
§ Dual mode operations: User/kernel mode, CPU privilege levels (Ring 3/0)

q Processes
§ Virtual resources including CPU share, address space, file descriptors, etc.

q Time-sharing: N applications on 1 CPU è 1/nth CPU for each application



4

q User -> Kernel mode
§ Explicit: 

- Call system calls to enter kernel mode
- Fault/exceptions (e.g, division by zero, attempt to execute privileged instructions
- Synchronous

§ Implicit: (external events, e.g., hardware interrupts or preemption)
- Preemption: higher priority kernel-level process needs to run
- Interrupts: What is it?
- What types of interrupts? Timer, keyboard, mouse, disk, network, etc.
- Asynchronous

q Kernel -> User mode
§ Via special privileged instruction (e.g., Intel iret)
§ A return from interrupt



5

q Process definition: An instance of a program that is being executed
(aka, a running programming)

q Abstractions provided to a process
§ Virtual CPU: illusion of many CPUs
§ Address space – machine state
§ Files, etc.

q Time-sharing to enable multi-programming

q Context switches
§ Context: the state of the running program, which includes the

current program text, the location within the program text (PC/IP), and all
associated state: variables (global, heap, stack, CPU registers)

§ Switches – Dual Mode operations



6

q Mode switch guarantees that kernel gains control when needed
§ To react to external events
§ To handle error situations
§ Entry into kernel is controlled

q Not all mode switches lead to context switches

q Kernel decides if/when – subject to process state transitions and 
scheduling policies

q Mode switch does not change the identity of current process/thread



7



8

q Check Linux code: struct task_struct { … }
§ https://elixir.bootlin.com/linux/v5.19.3/source/include/linux/sched.h#L726
§ struct mm_struct *mm;
§ struct files_struct *files;
§ struct sched_info sched_info;

https://elixir.bootlin.com/linux/v5.19.3/source/include/linux/sched.h


9

q How it works: 
§ The “syscall” instruction
§ Syscall table (ID, parameters)
§ Some example system calls 
§ Syscalls in Linux: “arch/x86/entry/syscalls/syscall_64.tbl”

q A demo with “printf()”
§ GDB cheatsheet: http://csapp.cs.cmu.edu/3e/docs/gdbnotes-x86-64.pdf
§ Linux kernel code: https://elixir.bootlin.com/linux/v5.19.3/source
§ Help command: “man strace”

http://csapp.cs.cmu.edu/3e/docs/gdbnotes-x86-64.pdf
https://elixir.bootlin.com/linux/v5.19.3/source


10

q Program: binary/executable, on-disk set of instructions + static data

q How does OS convert a program to a running process?
§ Load program into memory (disk/file read)
§ Parse parameters (registers, PC)
§ Main() 
§ Address space (stack, heap, etc.)
§ I/O accesses

q Process APIs
§ Create
§ Destroy
§ Wait
§ Misc control
§ Status

We ended here on 8/25.
Slides 7&8 not covered yet.


