
1

Instructor: Huaicheng Li

Oct 20 2022



2

q Midterm on 10/27 (Thur), In-class (Surge 104C), 75min

q Exam includes 3-5 multipart questions

q Format
§ Closed book, closed notes, closed computer
§ One letter size “cheatsheet” (front + back)

q Covered topics
§ Processes: dual-mode, context/mode switching, process states
§ Process APIs, system calls, signals, basic I/Os
§ Linking and loading: static + dynamic linking, scoping
§ Multi-threaded programming: locks, semaphore, condition variable, thread-safety, deadlock
§ Resources:

- CSAPP3e: Chapters 1, 7, 8, 9, 10, and 12
- Project 1, 2
- Exercises 1, 2, 3

q Special accommodations



3

q Ways to evaluate synchronization implementation
§ Correctness
§ Fairness
§ Performance

q Cost of locking
§ Indirect cost 

- resulting in loss of performance due to the use of locking
- fully concurrently à partially concurrent

§ Direct cost 
- (involved in actions the system had to take to implement it)
- ak.a, Lock function implementation overhead



4

q A microbenchmark / simulation experiment to measure locking cost
§ 5 CPU-bound processes contending for L locks
§ holding each lock for duration D
§ then running for duration U without lock
§ Thread chooses lock randomly.



5



6



7



8

q Serialization due to locks diminishes CPU utilization and increases an individual 
task’s latency
§ For parallel, mostly CPU-bound applications, it translates directly into loss of speedup
§ Particularly if locks are contended, no other tasks to run when threads are blocked

q This serialization effect would be exacerbated if blocked threads held locks (e.g., 
I/O, sleep, sem wait, pthread join?)

q Rule: Critical sections should not call any functions that may block, or else the 
critical section may become inaccessible

pthread_mutex_lock(&lock);
read(fd, buf, sizeof(buf));
pthread_mutex_unlock(&lock);

pthread_mutex_lock(&shutdownLock);
pthread_mutex_lock(&infoLock);
while (!moreInformation)

pthread_cond_wait(&moreInfo, &infoLock);
pthread_mutex_unlock(&infoLock);
pthread_mutex_unlock(&shutdownLock);



9

q Cautionary side note: several large software systems were either never parallelized 
or started with a “big lock” approach: the Linux kernel, Python’s
GIL, gtk GUI lock

q Idea: instead of having lock L protect data (A, B, C ) introduce locks LA, LB , LC
to protect A, B, and C , respectively.

q Thus, updates to A will not prevent simultaneous updates to B

q This introduces 3 risks
§ Higher risk of atomicity violations: if A and B must be updated in tandem (atomically) -

say update to B is dependent on A having a value, both locks must be held. Always
holding both locks negates purpose of having 2 locks; not holding them both where needed
leads to atomicity violations

§ Higher risk of deadlocks: if there are situations where both locks must be held, a locking
order must be established to avoid deadlocks

§ More frequent calls to lock/unlock translates to increased direct cost (locking overhead)



10

q What happens under the hood in a call to pthread mutex lock()?
§ Fast path: an atomic instruction tries to acquire the lock (if available) without causing a

mode switch (e.g. cmpxchg %rax, (%rbx)) - in memory flag that indicates if lock is
available

§ For fast path numbers, see Jeff Dean/Peter Norvig/Colin Scott Numbers Every Programmer 
Should Know
- 17× L1 reference, 4× L2 reference, 16 × main memory reference (17ns as of 2010’s)

§ Slow path: if atomic instruction indicates that lock is already held, make system call
(futex_wait) and inform kernel that thread should block. Then, context switch to other
ready thread (if any)

q pthread mutex unlock()?
§ Fast path: just place lock into unlocked state
§ Slow path (someone is waiting for the lock): make system call (futex_wakeup) and inform

kernel to wake up any waiting thread(s). These threads are unblocked (made ready), placed
into ready queue, and eventually scheduled - another context switch

q Both mode and context switches can be costly
§ Pipeline stalls
§ Cache pollution

https://colin-scott.github.io/personal_website/research/interactive_latency.html


11


